Bài 1. Đại cương về đường thẳng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song
Đề bài
Trong mặt phẳng (\( \alpha\)) cho hình bình hành \(ABCD\). Qua \(A, B, C, D\) lần lượt vẽ bốn đường thẳng \(a,b,c,d\) song song với nhau và không nằm trên (\( \alpha\)). Trên \(a, b, c\) lần lượt lấy ba điểm \(A', B', C'\) tùy ý
a) Hãy xác định giao điểm \(D'\) của đường thẳng \(d\) với mặt phẳng \((A'B'C')\).
b) Chứng minh \(A'B'C'D'\) là hình bình hành.
Phương pháp giải - Xem chi tiết
a) Xác định điểm chung của \(d\) và \((A'B'C')\).
b) Sử dụng nội dung của định lí 3: Cho hai mặt phẳng song song. Nếu một mặt phẳng cắt mặt phẳng này thì cũng cắt mặt phẳng kia và hai giao tuyến song song với nhau.
Lời giải chi tiết
a) Gọi \(O = AC ∩ BD\); \(O'\) là trung điểm \(A'C'\) thì OO' là đường trung bình của hình thang \(ACC'A'\) \(\Rightarrow OO' // AA'\)
\(\Rightarrow OO'// d // b\) mà \(OO' \subset mp (b;d) \Rightarrow O' \in mp (b;d) \) ( mặt phẳng xác định bởi hai đường thẳng song song).
Trong \(mp (b;d)\), gọi \(D'=d ∩ B'O'\) ta có:
\(\left\{ \begin{array}{l}D' \in B'O' \subset \left( {A'B'C'} \right)\\D' \in d\end{array} \right. \)
\(\Rightarrow D' = d \cap \left( {A'B'C'} \right)\) chính là điểm cần tìm.
b) \(mp(a;d) // mp( b;c)\) , mặt phẳng thứ 3 \((A'B'C'D')\) cắt hai mặt phẳng trên theo hai giao tuyến song song : \(A'D' // B'C'\). Chứng minh tương tự được \(A'B' // D'C'\).
Từ đó suy ra \(A'B'C'D'\) là hình bình hành.
Cách khác:
a) Giả sử \(\left( {ABC} \right) \cap {\rm{ }}d = {\rm{ }}D\)
\(\begin{array}{*{20}{l}}
{ \Rightarrow \left( {ABC} \right) \cap \left( {CCD} \right) = {\rm{ }}CD.}\\
{ + {\rm{ }}AA//CC \subset \left( {CCD} \right)}\\
{ \Rightarrow {\rm{ }}AA//\left( {CCD} \right).}\\
{AB//CD \subset \left( {CCD} \right)}\\
{ \Rightarrow {\rm{ }}AB//\left( {CCD} \right)}
\end{array}\)
\((AA’B’B)\) có: \(\left\{ \begin{array}{l}AA'//\left( {C'CD} \right)\\AB//\left( {C'CD} \right)\\AA' \cap AB\end{array} \right.\)
\( \Rightarrow {\rm{ }}\left( {AABB} \right){\rm{ }}//{\rm{ }}\left( {CCD} \right).\)
Mà \(\left( {ABC} \right) \cap \left( {AABB} \right) = {\rm{ }}AB\)
\(⇒ (A’B’C’)\) cắt \((C’CD)\) và giao tuyến song song với \(A’B’\)
\(⇒ C’D’ // A’B’.\)
b) Chứng minh tương tự phần \(a\) ta có \(B’C’ // A’D’.\)
Tứ giác \(A’B’C’D’\) có: \(B’C’ // A’D’\) và \(C’D’ // A’B’\)
\(⇒ A’B’C’D’\) là hình bình hành.
Unit 2: Get well
Chương 5. Hidrocacbon No
Unit 7: Artists
Tải 10 đề kiểm tra 1 tiết - Chương 3
Chương 4. Đại Cương Về Hóa Học Hữu Cơ
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11