Bài 1. Khái niệm về khối đa diện
Bài 2. Phép đối xứng qua mặt phẳng và sự bằng nhau của các khối đa diện
Bài 3. Phép vị tự và sự đồng dạng của các khối đa diện. Các khối đa diện đều
Bài 4. Thể tích của khối đa diện
Ôn tập chương I - Khối đa diện và thể tích của chúng
Câu hỏi trắc nghiệm chương I - Khối đa diện và thể tích của chúng
Trong không gian tọa độ Oxyz, cho hai điểm A(1; -1; 2), B(2; 0; 1).
LG a
Tìm quỹ tích các điểm M sao cho \(M{A^2} - M{B^2} = 2.\)
Lời giải chi tiết:
Giả sử M(x, y, z) ta có: \(M{A^2} - M{B^2} = 2.\)
\(\eqalign{
& \Leftrightarrow {\left( {1 - x} \right)^2} + {\left( { - 1 - y} \right)^2} + {\left( {2 - z} \right)^2} \cr &- {\left( {2 - x} \right)^2} - {y^2} - {\left( {1 - z} \right)^2} = 2 \cr
& \Leftrightarrow 2x + 2y - 2z - 1 = 0. \cr} \)
Vậy quỹ tích điểm M là mặt phẳng có phương trình \(2x + 2y - 2z - 1 = 0.\)
LG b
Tìm quỹ tích các điểm N sao cho \(N{A^2} + N{B^2} = 3.\)
Lời giải chi tiết:
Giả sử N(x, y, z) ta có: \(N{A^2} + N{B^2} = 3.\)
\(\eqalign{
& \Leftrightarrow {\left( {1 - x} \right)^2} + {\left( { - 1 - y} \right)^2} + {\left( {2 - z} \right)^2} \cr &+ {\left( {2 - x} \right)^2} + {y^2} + {\left( {1 - z} \right)^2} = 3 \cr
& \Leftrightarrow {x^2} + {y^2} + {z^2} - 3x + y - 3z + 4 = 0 \cr
& \Leftrightarrow {\left( {x - {3 \over 2}} \right)^2} + {\left( {y + {1 \over 2}} \right)^2} + {\left( {z - {3 \over 2}} \right)^2} = {3 \over 4}. \cr} \)
Vậy quỹ tích các điểm N là mặt cầu có tâm \(I\left( {{3 \over 2}; - {1 \over 2};{3 \over 2}} \right)\), bán kính \({{\sqrt 3 } \over 2}.\)
LG c
Tìm quỹ tích các điểm cách đều hai mặt phẳng (OAB) và (Oxy).
Lời giải chi tiết:
Mặt phẳng (OAB) đi qua O, có vectơ pháp tuyến \(\overrightarrow n = \left[ {\overrightarrow {OA} ,\overrightarrow {OB} } \right] = \left( { - 1;3;2} \right)\) nên có phương trình: \( - x + 3y + 2z = 0.\)
Mp(Oxy) có phương trình z = 0.
Điểm M(x, y, z) cách đều mp(OAB) và mp(Oxy) khi và chỉ khi:
\(\eqalign{
& {{\left| { - x + 3y + 2z} \right|} \over {\sqrt {1 + 9 + 4} }} = \left| z \right| \cr &\Leftrightarrow - x + 3y + 2z = \pm \sqrt {14} z \cr
& \Leftrightarrow x - 3y + \left( { \pm \sqrt {14} - 2} \right)z = 0. \cr} \)
Chương 4. POLIME VÀ VẬT LIỆU POLIME
Chương 3. AMIN. AMINO AXIT. PROTEIN
Đề thi học kì 1
SOẠN VĂN 12 TẬP 2
Bài 39. Vấn đề khai thác lãnh thổ theo chiều sâu ở Đông Nam Bộ