1. Hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền
2. Hệ thức giữa ba cạnh của tam giác vuông
3. Hệ thức giữa đường cao ứng với cạnh huyền và hình chiếu của hai cạnh góc vuông trên cạnh huyền
4. Hệ thức diện tích
5. Hệ thức giữa đường cao và hai cạnh góc vuông
Bài tập - Chủ đề 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông
Luyện tập - Chủ đề 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông
1. Khái niệm tỉ số lượng giác của một góc nhọn
2. Liên hệ giữa các tỉ số lượng giác của một góc
3. Tỉ số lượng giác của hai góc phụ nhau
4. Tỉ số lượng giác của hai góc đặc biệt
5. Tìm tỉ số lượng giác của các góc đặc biệt
Bài tập - Chủ đề 2. Tỉ số lượng giác của góc nhọn
Luyện tập - Chủ đề 2. Tỉ số lượng giác của góc nhọn
Đề bài
Cho tam giác ABC vuông cân tại A. Điểm D di động trên cạnh AC. Đường thẳng d vuông góc với AC tại C cắt đường BD tại E. Chứng minh rằng khi D di chuyển trên cạnh AC thì tổng \(\dfrac{1}{{B{D^2}}} + \dfrac{1}{{B{E^2}}}\) không đổi.
Phương pháp giải - Xem chi tiết
Dựng hình vuông ABFC, qua B kẻ đường thẳng vuông góc với BE cắt đường thẳng CF tại G. Chứng minh BG = BD từ đóáp dụng hệ thức lượng trong tam giác vuông để chứng minh tổng không đổi.
Lời giải chi tiết
Dựng hình vuông ABFC, qua B kẻ đường thẳng vuông góc với BE cắt đường thẳng CF tại G.
Xét tam giác BFG và tam giác BAD có:
BF = BA (ABFC là hình vuông); \(\widehat {FBG} = \widehat {ABD}\) (cùng phụ với \(\widehat {DBF}\)); \(\widehat {BFG} = \widehat {BAD} = {90^o}\)
\( \Rightarrow \Delta BFG = \Delta BAD\) (g.c.g)
\( \Rightarrow BG = BD\) (2 cạnh tương ứng)
Áp dụng hệ thức lượng trong tam giác BEG vuông tại B, đường cao BF ta có:
\(\dfrac{1}{{B{D^2}}} + \dfrac{1}{{B{E^2}}} = \dfrac{1}{{B{G^2}}} + \dfrac{1}{{B{E^2}}} \)\(\;= \dfrac{1}{{B{F^2}}} = \dfrac{1}{{A{C^2}}}\)không đổi.
Đề thi vào 10 môn Toán Bình Thuận
Đề kiểm tra 15 phút - Chương 4 - Sinh 9
Tải 20 đề kiểm tra 15 phút học kì 2 Văn 9
Đề kiểm tra 15 phút - Chương 9 - Sinh 9
Unit 3: A Trip To The Countryside - Một chuyến về quê