Đề bài
Trong hệ toạ độ \(Oxyz\), cho điểm \(M(2 ; 1 ; 0)\) và mặt phẳng \((α): x + 3y - z - 27 = 0\). Tìm toạ độ điểm \(M'\) đối xứng với \(M\) qua \((α)\).
Phương pháp giải - Xem chi tiết
Gọi \(H\) là hình chiếu vuông góc của \(M\) lên mặt phẳng \((α)\) và \(M'\) là điểm đối xứng của \(M\) qua \((α)\) thì \(H\) là trung điểm của đoạn thẳng \(MM'\).
+) Xác định tọa độ hình chiếu H của M trên mặ phẳng \((\alpha)\).
+) Xác định tọa độ điểm M': \(\left\{ \begin{array}{l}{x_{M'}} = 2{x_H} - {x_M}\\{y_{M'}} = 2{y_H} - {y_M}\\{z_{M'}} = 2{z_H} - {z_M}\end{array} \right.\)
Lời giải chi tiết
Gọi \(H\) là hình chiếu vuông góc của \(M\) lên mặt phẳng \((α)\) và \(M'\) là điểm đối xứng của \(M\) qua \((α)\) thì \(H\) là trung điểm của đoạn thẳng \(MM'\). Xét đường thẳng \(∆\) qua \(M\) và \(∆\) vuông góc với \((α)\).
Phương trình \(∆\) đi qua M và nhận \({\overrightarrow n _{\left( \alpha \right)}} = \left( {1;3; - 1} \right)\) là 1 VTCP có dạng:\(\left\{ \matrix{x = 2 + t \hfill \cr y = 1 + 3t \hfill \cr z = - t \hfill \cr} \right.\)
Gọi \(H = \Delta \cap \left( \alpha \right) \Rightarrow H\left( {2 + t;1 + 3t; - t} \right)\)
Thay tọa độ điểm H vào phương trình \((\alpha)\) ta được: \(2+t+3(1+3t)-(-t)-27=0\Rightarrow 11t=22 \Rightarrow t=2\)
\(\Rightarrow H(4; 7; -2)\)
\(M\) và \(M'\) đối xứng nhau qua \((α)\) nên H là trung điểm của MM'
\(\left\{ \begin{array}{l}
{x_{M'}} = 2{x_H} - {x_M} = 6\\
{y_{M'}} = 2{y_H} - {y_M} = 13\\
{z_{M'}} = 2{z_H} - {z_M} = - 4
\end{array} \right. \Rightarrow M'\left( {6;13; - 4} \right)\)
Unit 2. Cultural Diversity
CHƯƠNG IV. DAO ĐỘNG VÀ SÓNG ĐIỆN TỪ
Unit 15. Women in Society
Bài 5. Lịch sử hình thành và phát triển lãnh thổ (tiếp theo)
Tiếng Anh 12 mới tập 2