PHẦN HÌNH HỌC - TOÁN 9 TẬP 1

Bài 11 trang 104 SGK Toán 9 tập 1

Đề bài

Cho đường tròn \((O)\) đường kính \(AB\), dây \(CD\) không cắt đường kính \(AB\). Gọi \(H\) và \(K\) theo thứ tự là chân các đường vuông góc kẻ từ \(A\) và \(B\) đến \(CD\). Chứng minh rằng \(CH=DK\)

Gợi ý: Kẻ \(OM\) vuông góc với \(CD\).  

Phương pháp giải - Xem chi tiết

+) Kẻ đường kính vuông góc với dây.

+) Sử dụng tính chất: trong một đường tròn, đường kính vuông góc với dây thì đi qua trung điểm của dây.

+) Trong hình thang, đường thẳng song song với hai đáy và đi qua trung điểm của một cạnh bên thì đi qua trung điểm của cạnh bên còn lại.

Lời giải chi tiết

 

Vẽ \(OM \bot CD\) 

Vì OM là một phần đường kính và CD là dây của đường tròn nên ta có M là trung điểm CD hay \( MC=MD\)   (1) (định lý)

Tứ giác \(AHKB\) có \(AH \bot HK;\ BK \bot HK \Rightarrow HA // BK\).

Suy ra tứ giác \(AHKB\) là hình thang.  

Xét hình thang \(AHKB\), ta có:

\(OM // AH //BK\) (cùng vuông góc với \(CD\))

mà \(AO=BO=\dfrac{AB}{2}\)

\(\Rightarrow MO\) là đường trung bình của hình thang \(AHKB\).

\(\Rightarrow MH=MK\)   (2)

Từ (1) và (2)  \(\Rightarrow MH-MC=MK-MD \Leftrightarrow CH=DK\) (đpcm)

Nhận xét: Kết quả của bài toán trên không thay đổi nếu ta đổi chỗ hai điểm \(C\) và \(D\) cho nhau.

Fqa.vn
Bình chọn:
5/5 (1 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved