Bài 1. Mở đầu về phương trình
Bài 2. Phương trình bậc nhất một ẩn và cách giải
Bài 3. Phương trình đưa được về dạng ax + b = 0
Bài 4. Phương trình tích
Bài 5. Phương trình chứa ẩn ở mẫu
Bài 6. Giải bài toán bằng cách lập phương trình
Bài 7. Giải bài toán bằng cách lập phương trình (tiếp)
Ôn tập chương III. Phương trình bậc nhất một ẩn
Giải các phương trình:
LG a.
\( \dfrac{5x-2}{3}=\dfrac{5-3x}{2}\);
Phương pháp giải:
- Để giải các phương trình đưa được về \(ax + b = 0\) ta thường biến đổi phương trình như sau:
+ Quy đồng mẫu hai vế phương trình và khử mẫu.
+ Thực hiện phép tính để bỏ dấu ngoặc và chuyển vế các hạng tử để đưa phương trình về dạng \(ax + b=0\) hoặc \(ax=-b\).
+ Tìm nghiệm của phương trình dạng \(ax+b=0\)
Lời giải chi tiết:
\( \dfrac{5x-2}{3}=\dfrac{5-3x}{2}\)
\( \Leftrightarrow \dfrac{{2\left( {5x - 2} \right)}}{6} = \dfrac{{3\left( {5 - 3x} \right)}}{6}\)
\(⇔ 2(5x - 2) = 3(5 - 3x)\)
\(⇔ 10x - 4 = 15 - 9x\)
\(⇔ 10x + 9x = 15 + 4\)
\(⇔ 19x = 19\)
\( \Leftrightarrow x = 19:19\)
\(⇔ x = 1\)
Vậy phương trình có nghiệm duy nhất \(x = 1\).
LG b.
\( \dfrac{10x+3}{12}=1+\dfrac{6+8x}{9}\)
Phương pháp giải:
- Để giải các phương trình đưa được về \(ax + b = 0\) ta thường biến đổi phương trình như sau:
+ Quy đồng mẫu hai vế phương trình và khử mẫu.
+ Thực hiện phép tính để bỏ dấu ngoặc và chuyển vế các hạng tử để đưa phương trình về dạng \(ax + b=0\) hoặc \(ax=-b\).
+ Tìm nghiệm của phương trình dạng \(ax+b=0\)
Lời giải chi tiết:
\( \dfrac{10x+3}{12}=1+\dfrac{6+8x}{9}\)
\(⇔ \dfrac{3(10x+3)}{36}=\dfrac{{36}}{{36}} + \dfrac{{4(6 + 8x)}}{{36}}\)
\(⇔ 30x + 9 = 36 + 24 + 32x\)
\(⇔ 30x - 32x = 60 - 9\)
\(⇔ -2x = 51\)
\(⇔ x = \dfrac{-51}{2}\)
\(\Leftrightarrow x= -25,5\)
Vậy phương trình có nghiệm duy nhất \(x = -25,5\).
LG c.
\( \dfrac{7x-1}{6} + 2x = \dfrac{16 - x}{5}\);
Phương pháp giải:
- Để giải các phương trình đưa được về \(ax + b = 0\) ta thường biến đổi phương trình như sau:
+ Quy đồng mẫu hai vế phương trình và khử mẫu.
+ Thực hiện phép tính để bỏ dấu ngoặc và chuyển vế các hạng tử để đưa phương trình về dạng \(ax + b=0\) hoặc \(ax=-b\).
+ Tìm nghiệm của phương trình dạng \(ax+b=0\)
Lời giải chi tiết:
\( \dfrac{7x-1}{6} + 2x = \dfrac{16 - x}{5}\)
\( \Leftrightarrow \dfrac{{5.\left( {7x - 1} \right)}}{{30}} + \dfrac{{30.2x}}{{30}} = \dfrac{{6.\left( {16 - x} \right)}}{{30}}\)
\( \Leftrightarrow 5.\left( {7x - 1} \right) + 60x = 6\left( {16 - x} \right)\)
\( \Leftrightarrow 35x - 5 + 60x = 96 - 6x\)
\(⇔ 95x -5 = 96 - 6x\)
\(⇔ 95x + 6x = 96 + 5\)
\(⇔ 101x = 101\)
\( \Leftrightarrow x = 101:101\)
\(⇔ x = 1\)
Vậy phương trình có nghiệm duy nhất \(x = 1\).
LG d.
\(4(0,5 - 1,5x) = -\dfrac{5x-6}{3}\)
Phương pháp giải:
- Để giải các phương trình đưa được về \(ax + b = 0\) ta thường biến đổi phương trình như sau:
+ Quy đồng mẫu hai vế phương trình và khử mẫu.
+ Thực hiện phép tính để bỏ dấu ngoặc và chuyển vế các hạng tử để đưa phương trình về dạng \(ax + b=0\) hoặc \(ax=-b\).
+ Tìm nghiệm của phương trình dạng \(ax+b=0\)
Lời giải chi tiết:
\(4(0,5 - 1,5x) = -\dfrac{5x-6}{3}\)
\(⇔ 2 - 6x = -\dfrac{5x-6}{3}\)
\( \Leftrightarrow \dfrac{{3\left( {2 - 6x} \right)}}{3} = - \dfrac{{5x - 6}}{3}\)
\(⇔ 3(2 - 6x)= - (5x-6)\)
\( ⇔ 6 - 18x = -5x + 6\)
\( ⇔ -18x + 5x = 6-6\)
\( ⇔ -13x = 0\)
\( \Leftrightarrow x = 0:( - 13)\)
\( ⇔ x = 0\)
Vậy phương trình có nghiệm duy nhất \(x = 0.\)
Bài 8: Lập kế hoạch chi tiêu
SBT Ngữ văn 8 - Chân trời sáng tạo tập 1
PHẦN BA. KỸ THUẬT ĐIỆN
Unit 6: What Will Earth Be Like in the Future?
Revision (Units 1 - 2)
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8