1. Nội dung câu hỏi
Tính giá trị của các biểu thức:
a) \({\log _2}72 - \frac{1}{2}\left( {{{\log }_2}3 + {{\log }_2}27} \right)\);
b) \({5^{{{\log }_2}40 - {{\log }_2}5}}\);
c) \({3^{2 + {{\log }_9}2}}\).
2. Phương pháp giải
Sử dụng tính chất của lôgarit.
3. Lời giải chi tiết
a) \({\log _2}72 - \frac{1}{2}\left( {{{\log }_2}3 + {{\log }_2}27} \right) = {\log _2}72 - \frac{1}{2}{\log _2}\left( {3.27} \right) = {\log _2}72 - \frac{1}{2}{\log _2}81\)
\( = {\log _2}72 - {\log _2}{81^{\frac{1}{2}}} = {\log _2}72 - {\log _2}9 = {\log _2}\frac{{72}}{9} = {\log _2}8 = {\log _2}{2^3} = 3{\log _2}2 = 3\).
b) \({5^{{{\log }_2}40 - {{\log }_2}5}} = {5^{{{\log }_2}\frac{{40}}{5}}} = {5^{{{\log }_2}8}} = {5^{{{\log }_2}{2^3}}} = {5^{3{{\log }_2}2}} = {5^3} = 125\).
c) \({3^{2 + {{\log }_9}2}} = {3^{{{\log }_9}{9^2} + {{\log }_9}2}} = {3^{{{\log }_9}\left( {{9^2}.2} \right)}} = {3^{{{\log }_{{3^2}}}\left( {{9^2}.2} \right)}} = {3^{\frac{1}{2}{{\log }_3}\left( {{9^2}.2} \right)}} = {\left( {{3^{{{\log }_3}\left( {{9^2}.2} \right)}}} \right)^{\frac{1}{2}}} = {\left( {{9^2}.2} \right)^{\frac{1}{2}}} = 9\sqrt 2 \).
Phần hai: Giáo dục pháp luật
Đề minh họa số 3
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Giáo dục kinh tế và pháp luật lớp 11
Chủ đề 3. Rèn luyện bản thân
Review 2 (Units 4-5)
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11