Bài 12 trang 93 SGK Hình học 12

Đề bài

Trong hệ toạ độ \(Oxyz\), tìm toạ độ điểm \(A'\) đối xứng với điểm \(A(1 ; -2 ; -5)\) qua đường thẳng \(∆\) có phương trình \(\left\{ \matrix{x = 1 + 2t \hfill \cr y = - 1 - t \hfill \cr z = 2t. \hfill \cr} \right.\)

Phương pháp giải - Xem chi tiết

+) Xác định tọa độ điểm H là hình chiếu của A trên đường thẳng \(\Delta\).

- Gọi (P) là mặt phẳng đi qua A và vuông góc với \(\Delta\). Tìm phương trình mặt phẳng (P).

- Khi đó H là giao điểm của \(\Delta\) và mặt phẳng (P).

+) Điểm M' đối xứng với M qua \(\Delta\) khi và chỉ khi H là trung điểm của MM', từ đó suy ra tọa độ điểm M'.

Lời giải chi tiết

Gọi \(H\left( {1 + 2t; - 1 - t;2t} \right) \in \Delta \) là hình chiếu của \(A\) trên \(\Delta \).

Có \(\overrightarrow {{u_\Delta }}  = \left( {2; - 1;2} \right)\) , \(\overrightarrow {AH}  = \left( {2t;1 - t;2t + 5} \right)\)

\(\overrightarrow {AH}  \bot \overrightarrow {{u_\Delta }}  \Leftrightarrow \overrightarrow {AH} .\overrightarrow {{u_\Delta }}  = 0\) \( \Leftrightarrow 2.2t - 1.\left( {1 - t} \right) + 2.\left( {2t + 5} \right) = 0\) \( \Leftrightarrow 4t - 1 + t + 4t + 10 = 0\) \( \Leftrightarrow 9t + 9 = 0 \Leftrightarrow t =  - 1\) \( \Rightarrow H\left( { - 1;0; - 2} \right)\)

Vì A' đối xứng với A qua \(\Delta\) nên H là trung điểm của AA'. Ta có:

\(\begin{array}{l}
\left\{ {\begin{array}{*{20}{l}}
{{x_{A'}} = 2{x_H} - {x_A}}\\
{{y_{A'}} = 2{y_H} - {y_A}}\\
{{z_{A'}} = 2{z_H} - {z_A}}
\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{{x_{A'}} = 2.\left( { - 1} \right) - 1 = - 3}\\
{{y_{A'}} = 2.0 - \left( { - 2} \right) = 2}\\
{{z_{A'}} = 2.\left( { - 2} \right) - \left( { - 5} \right) = 1}
\end{array}} \right.\\
\Rightarrow A'\left( { - 3;2;1} \right)
\end{array}\)

Cách khác:

Ta có thể tìm tọa độ điểm \(H\) như sau:

Gọi \(H\) là hình chiếu vuông góc của \(A\) lên đường thẳng \(△\). Khi đó \(H\) là trung điểm của \(AA'\).

Xét mặt phẳng \((P)\) qua \(A\) và \((P) ⊥ △\). Khi đó \(H = (P) ⋂ △\).

Vì \(\overrightarrow u (2; -1; 2)\) là vectơ chỉ phương của \(△\) nên \(\overrightarrow u \) là vectơ pháp tuyến của \((P)\).

Phương trình mặt phẳng \((P)\) có dạng: \(2(x - 1) - (y + 2) + 2(z + 5) = 0\) hay \(2x - y + 2z + 6 = 0\)      (1)

\(H = \Delta  \cap \left( P \right) \Rightarrow H \in \Delta  \Rightarrow H\left( {1 + 2t; - 1 - t;2t} \right)\), thay tọa độ điểm H vào phương trình mặt phẳng (P) ta có: \(2(1 + 2t) + (1 + t) + 4t + 6 = 0\)

\( \Rightarrow 9t + 9 = 0\Rightarrow  t = -1\) \( \Rightarrow  H(-1; 0; -2)\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved