Bài 12 trang 94 Tài liệu dạy – học Toán 9 tập 2

Đề bài

Gọi A, B, C là ba điểm theo thứ tự trên một đường thẳng. Vẽ hai đường tròn đường kính AB và BC. Từ A vẽ các đường thẳng tiếp xúc với đường tròn đường kính BC tại D và cắt đường tròn đường kính AB tại E. Chứng minh BD là phân giác góc \(\widehat {EBC}\).

Phương pháp giải - Xem chi tiết

Chứng minh \(\widehat {EBD}\) và \(\widehat {{O_2}BD}\) cùng bằng \(\widehat {{O_2}DB}\).

Lời giải chi tiết

 

 

Gọi O1 và O2 lần lượt là tâm đường tròn đường kính AB và đường tròn đường kính BC.

Xét đường tròn đường kính AB có \(\widehat {AEB} = {90^0}\) (góc nội tiếp chắn nửa đường tròn) \( \Rightarrow AE \bot BE\)

Vì AD là tiếp tuyến của đường tròn đường kính BC tại D nên \({O_2}D \bot AD\) hay \({O_2}D \bot AE\)

Từ đó suy ra \({O_2}D//BE\) (cùng vuông góc với AE) \( \Rightarrow \widehat {EBD} = \widehat {{O_2}DB}\) (1) (so le trong)

Mà \({O_2}B = {O_2}D \Rightarrow \Delta {O_2}BD\) cân tại O2\( \Rightarrow \widehat {{O_2}DB} = \widehat {{O_2}BD}\) (2).

Từ (1) và (2) \( \Rightarrow \widehat {EBD} = \widehat {{O_2}BD} \Rightarrow BD\) là phân giác của góc \(\widehat {EBC}\) (đpcm).

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved