Tìm các tiệm cận đường và ngang của đồ thị mỗi hàm số sau:
LG a
\(y = \dfrac{{2x - 1}}{{x + 2}}\)
Phương pháp giải:
- Tiệm cận đứng: Đường thẳng \(x = {x_0}\) được gọi là tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right)\) nếu nó thỏa mãn một trong 4 điều kiện sau: \(\left[ \begin{array}{l}\mathop {\lim }\limits_{x \to x_0^ + } y = + \infty \\\mathop {\lim }\limits_{x \to x_0^ + } y = - \infty \\\mathop {\lim }\limits_{x \to x_0^ - } y = + \infty \\\mathop {\lim }\limits_{x \to x_0^ - } y = - \infty \end{array} \right.\)
- Tiệm cận ngang: Đường thẳng \(y = {y_0}\) được gọi là tiệm cận ngang của đồ thị hàm số \(y = f\left( x \right)\) nếu nó thỏa mãn một trong 2 điều kiện sau: \(\left[ \begin{array}{l}\mathop {\lim }\limits_{x \to + \infty } y = {y_0}\\\mathop {\lim }\limits_{x \to - \infty } y = {y_0}\end{array} \right.\)
Lời giải chi tiết:
\(y = \dfrac{{2x - 1}}{{x + 2}}\)
Vì \(\mathop {\lim }\limits_{x \to - {2^ + }} \left( {2x - 1} \right) \) \(= 2.\left( { - 2} \right) - 1 = - 5 < 0\) và \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to - {2^ + }} \left( {x + 2} \right) = 0\\x + 2 > 0,\forall x > - 2\end{array} \right.\)
nên \(\mathop {\lim }\limits_{x \to - {2^ + }} \dfrac{{2x - 1}}{{x + 2}} = - \infty \)
Tương tự \(\mathop {\lim }\limits_{x \to - {2^ - }} \dfrac{{2x - 1}}{{x + 2}} = + \infty \) nên đường thẳng \(x = 2\) là tiệm cận đứng của đồ thị hàm số.
Vì \(\mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{2x - 1}}{{x + 2}} = \mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{2 - \dfrac{1}{x}}}{{1 + \dfrac{2}{x}}} = 2\) nên đường thẳng \(y = 2\) là tiệm cận ngang của đồ thị hàm số.
LG b
\(y = \dfrac{{3 - 2x}}{{3x + 1}}\);
Lời giải chi tiết:
Vì \(\mathop {\lim }\limits_{x \to {{\left( { - \frac{1}{3}} \right)}^ + }} \left( {3 - 2x} \right)\) \( = 3 - 2.\left( { - \frac{1}{3}} \right) = \frac{8}{3} > 0\) và \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {{\left( { - \frac{1}{3}} \right)}^ + }} \left( {3x + 1} \right) = 0\\3x + 1 > 0,\forall x > - \frac{1}{3}\end{array} \right.\) nên
\(\mathop {\lim }\limits_{x \to {{\left( { - \dfrac{1}{3}} \right)}^ + }} \dfrac{{3 - 2x}}{{3x + 1}} = + \infty ;\)
Tương tự \(\mathop {\lim }\limits_{x \to {{\left( { - \dfrac{1}{3}} \right)}^ - }} \dfrac{{3 - 2x}}{{3x + 1}} = - \infty \), ta có \(x = - \dfrac{1}{3}\) là tiệm cận đứng
Vì \(\mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{3 - 2x}}{{3x + 1}} = \mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{\dfrac{3}{x} - 2}}{{3 + \dfrac{1}{x}}} = - \dfrac{2}{3}\) nên đường thẳng \(y = - \dfrac{2}{3}\) là tiệm cận ngang.
LG c
\(y = \dfrac{5}{{2 - 3x}}\);
Lời giải chi tiết:
Vì \(5 > 0\) và \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {{\left( {\frac{2}{3}} \right)}^ + }} \left( {2 - 3x} \right) = 0\\2 - 3x < 0,\forall x > \frac{2}{3}\end{array} \right.\) nên
\(\mathop {\lim }\limits_{x \to {{\left( {\dfrac{2}{3}} \right)}^ + }} \dfrac{5}{{2 - 3x}} = - \infty ;\)
Tương tự \(\mathop {\lim }\limits_{x \to {{\left( {\dfrac{2}{3}} \right)}^ - }} \dfrac{5}{{2 - 3x}} = + \infty \) nên \(x = \dfrac{2}{3}\) là tiệm cận đứng,
Do \(\mathop {\lim }\limits_{x \to \pm \infty } \dfrac{5}{{2 - 3x}} = 0\) nên \(y = 0\) là tiệm cận ngang.
LG d
\(y = \dfrac{{ - 4}}{{x + 1}}\)
Lời giải chi tiết:
Vì \( - 4 < 0\) và \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to - {1^ + }} \left( {x + 1} \right) = 0\\x + 1 > 0,\forall x > - 1\end{array} \right.\) nên
\(\mathop {\lim }\limits_{x \to - {1^ + }} \dfrac{{ - 4}}{{x + 1}} = - \infty \)
Tương tự \(\mathop {\lim }\limits_{x \to - {1^ - }} \dfrac{{ - 4}}{{x + 1}} = + \infty \) nên \(x\; = - 1\) là tiệm cận đứng.
Vì \(\mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{ - 4}}{{x + 1}} = 0\) nên \(y = 0\) là tiệm cận ngang.
Đề kiểm tra 45 phút (1 tiết ) – Chương 6 – Hóa học 12
Chương 4. Ứng dụng di truyền học
Đề kiểm tra 45 phút kì I - Lớp 12
Unit 13. The 22nd SEA Games
Bài 4. Lịch sử hình thành và phát triển lãnh thổ