PHẦN HÌNH HỌC - TOÁN 9 TẬP 1

Bài 13 trang 106 sgk Toán 9 - tập 1

Đề bài

Cho đường tròn \((O)\) có các dây \(AB\) và \(CD\) bằng nhau, các tia \(AB\) và \(CD\) cắt nhau tại điểm \(E\) nằm bên ngoài đường tròn. Gọi \(H\) và \(K\) theo thứ tự là trung điểm của \(AB\) và \(CD\). Chứng minh rằng:

a) \(EH = EK\)

b) \(EA = EC\). 

Phương pháp giải - Xem chi tiết

a) Sử dụng các tính chất sau: Trong một đường tròn

+) Đường kính đi qua trung điểm của một dây không đi qua tâm thì vuông góc với dây ấy.

+) Hai dây bằng nhau thì cách đều tâm. 

b) Quy tắc cộng đoạn thẳng: Nếu I nằm giữa A và B thì IA + IB = AB.

Lời giải chi tiết

 

a) Nối OE. 

Vì \(HA=HB\)  nên  \(OH\perp AB\) (đường kính đi qua trung điểm của dây không đi qua tâm thì vuông góc với dây đó)

Vì \(KC=KD\)  nên  \(OK\perp CD\). (đường kính đi qua trung điểm của dây không đi qua tâm thì vuông góc với dây đó)

Mà \(AB=CD\) nên \(OH=OK\) (hai dây bằng nhau thì cách đều tâm).

Xét \(\Delta HOE\) và \(\Delta KOE\) có:

\(OH=OK\) 

\(EO\) chung

\(\widehat{EHO}=\widehat{EKO}=90^0\)

\(\Rightarrow\) \(\Delta HOE=\Delta KOE\) (cạnh huyền - cạnh góc vuông)

\(\Rightarrow\) \(EH=EK (1)\) ( 2 cạnh tương ứng)

b) Vì \(AB=CD\) nên \(\dfrac{AB}{2}=\dfrac{CD}{2}\) hay \(AH=KC\)  (2)

Từ (1) và (2) \(\Rightarrow\) \(EH+HA=EK+KC\)  

hay  \(EA=EC.\)

Fqa.vn
Bình chọn:
5/5 (1 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved