Bài 14 trang 142 Tài liệu dạy – học Toán 9 tập 2

Đề bài

CD là một đường kính của đường tròn (O), AB là một dây cung song song với CD. Vẽ dây cung AE song song với CB, gọi F là giao điểm các đường thẳng AB và DE. Đường thẳng đi qua F song song với BC cắt đường thẳng CD tại G. Chứng minh GA tiếp xúc với đường tròn (O).

Phương pháp giải - Xem chi tiết

+) Gọi H là giao điểm của AC và GF.

+) Chứng minh tứ giác AFDG và CDFH là tứ giác nội tiếp.

+) Chứng minh tam giác GAC và tam giác GDA đồng dạng \( \Rightarrow \widehat {GAC} = \widehat {GDA}\).

Lời giải chi tiết

 

Vì BC  // FG \( \Rightarrow \widehat {DCB} = \widehat {DGF}\) (hai góc đồng vị bằng nhau).

Mà \(\widehat {DCB} = \widehat {DAB}\) (hai góc nội tiếp cùng chắn cung BD) \( \Rightarrow \widehat {DGF} = \widehat {DAB}\) hay \(\widehat {DGF} = \widehat {DAF}\).

\( \Rightarrow \) Tứ giác AFDG là tứ giác nội tiếp (Tứ giác có hai đỉnh cùng nhìn một cạnh dưới các góc bằng nhau) \( \Rightarrow \widehat {GAD} = \widehat {GFD}\) (1) (hai góc nội tiếp cùng chắn cung GD).

Gọi H là giao điểm của AC và GF.

Ta có: AE // FH \( \Rightarrow \widehat {AED} = \widehat {HFD}\) (hai góc đồng vị bằng nhau).

Mà \(\widehat {AED} + \widehat {ACD} = {180^0}\) (Tứ giác ACDE là tứ giác nội tiếp) \( \Rightarrow \widehat {HFD} + \widehat {ACD} = {180^0}\)

Lại có \(\widehat {ACD} + \widehat {ACG} = {180^0}\) (hai góc kề bù) \( \Rightarrow \widehat {HFD} = \widehat {ACG}\) hay \(\widehat {GFD} = \widehat {ACG}\)  (2)

Từ (1) và (2) \( \Rightarrow \widehat {GAD} = \widehat {ACG}\).

Xét tam giác GAC và tam giác GDA có:

\(\widehat G\) chung;

\(\widehat {ACG} = \widehat {GAD}\,\,\left( {cmt} \right)\);

\( \Rightarrow \Delta GAC \sim \Delta GDA\,\,\left( {g.g} \right)\) \( \Rightarrow \widehat {GAC} = \widehat {GDA}\) (hai góc tương ứng).

Ta có: \(\widehat {GDA}\) là góc nội tiếp chắn cung AC).

\(\widehat {GAC}\) là góc ở vị trí tạo bởi tiếp tuyến và dây cung chắn cung AC.

Lại có \(\widehat {GAC} = \widehat {GDA}\,\,\left( {cmt} \right) \Rightarrow \) AG là tiếp tuyến của đường tròn \(\left( O \right)\) hay GA tiếp xúc với đường tròn (O) (đpcm).

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved