1. Nội dung câu hỏi
Viết công thức biểu thị \(y\) theo \(x\), biết \(2{\log _2}y = 2 + \frac{1}{2}{\log _2}x\).
2. Phương pháp giải
Sử dụng tính chất của lôgarit
3. Lời giải chi tiết
Ta có:
\(\begin{array}{l}2{\log _2}y = 2 + \frac{1}{2}{\log _2}x \Leftrightarrow {\log _2}{y^2} = {\log _2}{2^2} + {\log _2}{x^{\frac{1}{2}}} \Leftrightarrow {\log _2}{y^2} = {\log _2}\left( {{2^2}.{x^{\frac{1}{2}}}} \right)\\ \Leftrightarrow {y^2} = {2^2}\sqrt x \Leftrightarrow y = 2\sqrt[4]{x}\end{array}\).
HÌNH HỌC- TOÁN 11 NÂNG CAO
Các bài văn mẫu về Nghị luận xã hội lớp 11
Chương II. Sóng
Giáo dục kinh tế
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Vật lí lớp 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11