Đề bài
Chứng tỏ :
\(\eqalign{ & A = {1 \over {101}} + {1 \over {102}} + ... + {1 \over {200}} > {1 \over 2} \cr & B = {1 \over {{2^2}}} + {1 \over {{3^2}}} + ... + {1 \over {{{100}^2}}} < 1 \cr} \)
Lời giải chi tiết
\(A = {1 \over {101}} + {1 \over {102}} + ... + {1 \over {200}}\)
Ta có: \({1 \over {101}} > {1 \over {200}};{1 \over {102}} > {1 \over {200}};...{1 \over {200}} = {1 \over {200}} \Rightarrow \) Tổng A có 100 số hạng.
Do đó: \({1 \over {101}} + {1 \over {102}} + ... + {1 \over {199}} + {1 \over {200}} > {1 \over {200}}.100 = {1 \over 2}.\)
Vậy \(A > {1 \over 2}.\)
\(B = {1 \over {{2^2}}} + {1 \over {{3^2}}} + ... + {1 \over {{{100}^2}}}\)
Nhận xét: \({1 \over {{2^2}}} < {1 \over {1.2}};{1 \over {{3^2}}} < {1 \over {2.3}};{1 \over {{4^2}}} < {1 \over {3.4}};...{1 \over {{{100}^2}}} < {1 \over {99.100}}\)
Do đó: \({1 \over {{2^2}}} + {1 \over {{3^2}}} + {1 \over {{4^2}}} + ... + {1 \over {{{99}^2}}} + {1 \over {{{100}^2}}} < {1 \over {1.2}} + {1 \over {2.3}} + {1 \over {3.4}} + ... + {1 \over {99.100}}\)
Mà \({1 \over {1.2}} + {1 \over {2.3}} + {1 \over {3.4}} + ... + {1 \over {99.100}} = {1 \over 1} - {1 \over 2} + {1 \over 2} - {1 \over 3} + ... + {1 \over {99}} - {1 \over {100}} = {1 \over 1} - {1 \over {100}} < 1\)
Do đó:\({1 \over {{2^2}}} + {1 \over {{3^2}}} + {1 \over {{4^2}}} + ... + {1 \over {{{100}^2}}} < 1.\) Vậy B < 1.
Unit 5. The music of life
Bài 3: Vẻ đẹp quê hương
Unit 8. Sports and Games
Unit 4: Festivals and Free Time
Chủ đề I - NHÀ Ở
Ôn tập hè Toán Lớp 6
Bài tập trắc nghiệm Toán - Cánh diều
Bài tập trắc nghiệm Toán - Kết nối tri thức
Bài tập trắc nghiệm Toán 6 - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 6
SBT Toán - Cánh diều Lớp 6
SBT Toán - Kết nối tri thức Lớp 6
SBT Toán - Chân trời sáng tạo Lớp 6
SGK Toán - Cánh diều Lớp 6
SGK Toán - Chân trời sáng tạo Lớp 6
SGK Toán - Kết nối tri thức Lớp 6
Đề thi, đề kiểm tra Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán - Kết nối tri thức
Vở thực hành Toán Lớp 6