Đề bài
Hãy xác định các giá trị của m để phương trình sau có nghiệm \(x \in \left( {0;{\pi \over {12}}} \right)\)
\(\cos 4x = {\cos ^2}3x + m{\sin ^2}x\)
Lời giải chi tiết
Ta có:
\(\eqalign{
\cos 6x &= \cos \left( {2x + 4x} \right) \cr&= \cos 2x\cos 4x - \sin 2x\sin 4x \cr
& = \cos 2x\left( 2{{{\cos }^2}2x - 1} \right) - 2{\sin ^2}2x\cos 2x \cr
& = 2{\cos ^3}2x - \cos 2x - 2\left( {1 - {{\cos }^2}2x} \right)\cos 2x \cr&= 4{\cos ^3}2x - 3\cos 2x \cr} \)
Áp dụng kết quả đó, phương trình đã cho có thể biến đổi như sau:
\(\eqalign{& \cos 4x = {\cos ^2}3x + m{\sin ^2}x \cr&\Leftrightarrow \cos 4x = {{1 + \cos 6x} \over 2} + {{m\left( {1 - \cos 2x} \right)} \over 2} \cr
& \Leftrightarrow 2\left( {2{{\cos }^2}2x - 1} \right) = 1 + \cos 6x + m - m\cos 2x \cr
& \Leftrightarrow 4{\cos ^2}2x - 2 = 1 + 4{\cos ^3}2x - 3\cos 2x + m \cr&\;\;\;= m\cos 2x \cr
& \Leftrightarrow 4{\cos ^3}2x - 4{\cos ^2}2x - \left( {m + 3} \right)\cos 2x + m + 3 \cr&\;\;\;\;= 0 \cr} \)
\( \Leftrightarrow \left( {\cos 2x - 1} \right)\left[ {4{{\cos }^2}2x - \left( {m + 3} \right)} \right] = 0 \)
\(\Leftrightarrow \left[ \matrix{
\cos 2x = 1 \hfill \cr
4{\cos ^2}2x = \left( {m + 3} \right) \hfill \cr} \right.\)
Nếu phương trình có nghiệm \(x \in \left( {0;{\pi \over {12}}} \right)\) thì \(2x \in \left( {0;{\pi \over 6}} \right)\),
Suy ra \({{\sqrt 3 } \over 2} < \cos 2x < 1\) và \({3 \over 4} < {\cos ^2}2x < 1\), nghĩa là \(3 < m + 3 < 4\) hay \(0 < m < 1\)
Ngược lại, dễ thấy rằng nếu \(0 < m < 1\) thì phương trình có nghiệm \(x \in \left( {0;{\pi \over {12}}} \right)\)
Chương 2. Chủ nghĩa xã hội từ năm 1917 đến nay
Chủ đề 2: Nitrogen và sulfur
Review 2 (Units 4-5)
Chuyên đề 3. Một số vấn đề về pháp luật dân sự
Chương I. Dao động
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11