Đề bài
Chứng minh \(\widehat {OAB} = \widehat {OBA} = \widehat {OCD} = \widehat {ODC} = \widehat {ODE} = \widehat {ODE} = \widehat {OEA} = \widehat {OAE}\)
Từ đó chứng minh nếu một ngũ giác nội tiếp và có các cạnh bằng nhau thì nó có phải là ngũ giác đều.
Phương pháp giải - Xem chi tiết
Chứng minh ngũ giác ABCDE có tất cả các góc bằng nhau.
Lời giải chi tiết
Ta có : \(AB = BC = CD = DE = EA \)
\(\Rightarrow cung\,AB = cung\,BC = cung\,CD = cung\,DE = cung\,EA\) (các dây bằng nhau căng các cung bằng nhau).
\( \Rightarrow \widehat {AOB} = \widehat {BOC} = \widehat {COD} = \widehat {DOE} = \widehat {EOA}\) (số đo góc ở tâm bằng số đo cung bị chắn).
Xét \(\Delta OAB\) có \(OA = OB = R \Rightarrow \Delta OAB\) cân tại O.
\( \Rightarrow \widehat {OAB} = \widehat {OBA} = \dfrac{{{{180}^0} - \widehat {OAB}}}{2}\).
Chứng minh tương tự ta có
\(\begin{array}{l}\widehat {OBC} = \widehat {OCB} = \dfrac{{{{180}^0} - \widehat {BOC}}}{2}\\\widehat {OCD} = \widehat {ODC} = \dfrac{{{{180}^0} - \widehat {COD}}}{2}\\\widehat {ODE} = \widehat {ODE} = \dfrac{{{{180}^0} - \widehat {DOE}}}{2}\\\widehat {OEA} = \widehat {OAE} = \dfrac{{{{180}^0} - \widehat {EOA}}}{2}\end{array}\)
Mà \(\widehat {AOB} = \widehat {BOC} = \widehat {COD} = \widehat {DOE} = \widehat {EOA}\)
\(\begin{array}{l} \Rightarrow \widehat {OAB} = \widehat {OBA} = \widehat {OCD} = \widehat {ODC} = \widehat {ODE} = \widehat {ODE} = \widehat {OEA} = \widehat {OAE}\\ \Rightarrow \widehat {EAB} = \widehat {ABC} = \widehat {BCD} = \widehat {CDE} = \widehat {DEA}\end{array}\)
Vậy ngũ giác ABCDE là ngũ giác đều (Ngũ giác có tất cả các cạnh bằng nhau và các góc bằng nhau).
Đề thi vào 10 môn Văn Cà Mau
CHƯƠNG 4. HIĐROCACBON. NHIÊN LIỆU
Đề thi vào 10 môn Toán Hải Phòng
Đề thi vào 10 môn Anh Đồng Nai
Bài 31