Bài 1. Tứ giác
Bài 2. Hình thang
Bài 3. Hình thang cân
Bài 4. Đường trung bình của tam giác, của hình thang
Bài 5. Dựng hình bằng thước và compa. Dựng hình thang
Bài 6. Đối xứng trục
Bài 7. Hình bình hành
Bài 8. Đối xứng tâm
Bài 9. Hình chữ nhật
Bài 10. Đường thẳng song song với một đường thẳng cho trước
Bài 11. Hình thoi
Bài 12. Hình vuông
Ôn tập chương I. Tứ giác
Đề kiểm tra 15 phút - Chương 1
Đề kiểm tra 45 phút (1 tiết) - Chương 1
Đề bài
Đố. Vẽ hình chữ nhật \(ABCD\) có \(AB = 5\,cm, BC = 3\,cm.\)
a) Hãy vẽ một hình chữ nhật có diện tích nhỏ hơn nhưng có chu vi lớn hơn hình chữ nhật \(ABCD.\) Vẽ được mấy hình như vậy.
b) Hãy vẽ hình vuông có chu vi bằng chu vi hình chữ nhật \(ABCD.\) Vẽ được mấy hình vuông như vậy? So sánh diện tích hình chữ nhật với diện tích hình vuông có cùng chu vi vừa vẽ. Tại sao trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tích lớn nhất.
Phương pháp giải - Xem chi tiết
Áp dụng công thức tính diện tích hình chữ nhật, diện tích hình vuông.
Lời giải chi tiết
a) Hình chữ nhật \(ABCD\) đã cho có diện tích là \({S_{ABCD}} = 3.5 = 15\,(c{m^2}).\)
Chu vi hình chữ nhật \(ABCD\) là \((5+3).2=16\;(cm)\)
- Hình chữ nhật có chiều rộng là \(1\,cm\), chiều dài là \(12\,cm\) có diện tích là \(12c{m^2}<{S_{ABCD}}\) và chu vi là \(( 1+12).2 = 26\,(cm)\) (có \(26>16\)).
- Hình chữ nhật có chiều rộng là \(2\,cm\), chiều dài là \(7\,cm\) có diện tích là \(14c{m^2}<{S_{ABCD}}\) và chu vi là \((2+7).2 = 18\,(cm)\) (có \(18 > 16\)).
Như vậy, vẽ được nhiều hình chữ nhật có diện tích bé hơn nhưng có chu vi lớn hơn hình chữ nhật \(ABCD\) cho trước.
b) Chu vi hình chữ nhật \(ABCD\) đã cho là:
\((5+3).2 = 16 \,(cm)\)
Cạnh hình vuông có chu vi bằng chu vi hình chữ nhật \(ABCD\) là:
\(16 : 4 = 4\,(cm).\)
Diện tích hình vuông này là \(4.4 = 16 ({cm^2})\)
Vậy \({S_{hcn}} < {S_{hv}}\)
Vẽ được một hình vuông như vậy.
+) Tổng quát: Giả sử hình chữ nhật có các kích thước là \(a, b\). Khi đó:
- Diện tích của hình chữ nhật đó là: \(ab\)
- Chu vi hình chữ nhật đó là: \(2.(a+b)\)
- Cạnh của hình vuông có chu vi bằng chu vi hình chữ nhật là: \(\dfrac{{2.(a + b)}}{4}=\dfrac{{a + b}}{2}\)
Vậy diện tích hình vuông đó là: \({\left( {\dfrac{{a + b}}{2}} \right)^2}\)
Ta có:
\({\left( {\dfrac{{a + b}}{2}} \right)^2} = \dfrac{{{{\left( {a + b} \right)}^2}}}{4} \)\(\,= \dfrac{{{a^2} + 2{\rm{a}}b + {b^2}}}{4}\)\( = \dfrac{{{{\left( {a - b} \right)}^2} + 4{\rm{a}}b}}{4} \)\(\,= \dfrac{{{{\left( {a - b} \right)}^2}}}{4} + ab \ge ab\)
( vì \(\dfrac{{{{\left( {a - b} \right)}^2}}}{4} \ge 0\) với mọi \(\,a,\,b\))
Vậy trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tích lớn nhất.
Bài 22
SBT Ngữ văn 8 - Kết nối tri thức với cuộc sống tập 1
Unit 12: Which Is the Biggest Planet?
Bài 4. Bảo vệ lẽ phải
PHẦN ĐẠI SỐ - VỞ BÀI TẬP TOÁN 8 TẬP 1
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8