Bài 15 trang 143 Tài liệu dạy – học Toán 9 tập 2

Đề bài

Trên đường tròn tâm O chọn các điểm A, B, C sao cho sđ cung AB = sđ cung AC\( = {120^o}\) (A nằm giữa B và C). Đường đi qua trung điểm D, E lần lượt của hai cung AB và AC cắt các dây AB, AC lần lượt tại P và Q.

a) Chứng minh tam giác APQ là tam giác đều.

b) Chứng minh \(DP = \dfrac{1}{2}PQ = QE\)

Phương pháp giải - Xem chi tiết

a) Chứng minh tam giác APQ có hai góc bằng 600.

b) Chứng minh tam giác OAD đều, suy ra P là trung điểm của OD.

Chứng minh tương tự Q là trung điểm của OE.

Chứng minh OD = OE = PQ.

Lời giải chi tiết

 

a) D là trung điểm của cung  và \(OD \bot AB\) tại P (đường thẳng đi qua điểm chính giữa của 1 dây thì vuông góc với dây căng cung ấy).

Chứng minh hoàn toàn tương tự ta có: \(\widehat {AOE} = \widehat {COE} = {60^0}\) và \(OE \bot AC\) tại Q.

Xét tứ giác OPAQ có: \(\widehat {OPA} + \widehat {OQA} = {90^0} + {90^0} = {180^0} \Rightarrow \) Tứ giác OPAQ là tứ giác nội tiếp (Tứ giác có tổng hai góc đối bằng 1800)

\( \Rightarrow \widehat {APQ} = \widehat {AOQ} = {60^0};\)\(\,\,\widehat {AQP} = \widehat {AOP} = {60^0}\) (hai góc nội tiếp cùng chắn 1 cung thì bằng nhau).

Xét tam giác APQ có: \(\widehat {APQ} = \widehat {AQP} = {60^0} \Rightarrow \Delta APQ\) là tam giác đều.

b)  Xét tam giác OAD có \(OA = OD = R;\,\,\widehat {AOD} = {60^0}\) \( \Rightarrow \Delta OAD\) đều.

\( \Rightarrow \) Đường cao AP đồng thời là trung tuyến \( \Rightarrow PD = \dfrac{1}{2}OD\).

Chứng minh hoàn toàn tương tự ta có \(QE = \dfrac{1}{2}OE\).

Mà \(OD = OE \Rightarrow PD = QE = \dfrac{1}{2}OD\).

Xét tam giác AOD và tam giác AQP có:

AD = AP; AO = AQ; \(\widehat {OAD} = \widehat {POQ} = {60^0}\).

\( \Rightarrow \Delta AOD = \Delta AQP\,\,\left( {c.g.c} \right)\) \( \Rightarrow OD = PQ\).

Vậy \(PD = QE = \dfrac{1}{2}PQ\,\,\left( {dpcm} \right)\).

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved