PHẦN ĐẠI SỐ - TOÁN 9 TẬP 1

Bài 16 trang 51 sgk Toán 9 tập 1

Đề bài

a) Vẽ đồ thị các hàm số \(y = x\)   và  \(y = 2x + 2\) trên cùng một mặt phẳng tọa độ.

b) Gọi \(A\) là giao điểm của hai đồ thị nói trên, tìm tọa độ điểm \(A\).

c) Vẽ qua điểm \(B(0; 2)\) một đường thẳng song song với trục \(Ox\), cắt đường thẳng \(y = x\) tại điểm \(C\). Tìm tọa độ của điểm \(C\) rồi tính diện tích tam giác \(ABC\) (đơn vị đo trên các trục tọa độ là xentimét). 

Phương pháp giải - Xem chi tiết

a) Cách vẽ đồ thị hàm số \(y=ax+b,\ (a \ne 0)\): Đồ thị hàm số \(y=ax+b \, \, (a\neq 0)\) là đường thẳng:

+) Cắt trục hoành tại điểm \(A(-\dfrac{b}{a}; \, 0).\)  

+) Cắt trục tung tại điểm \(B(0;b).\)

Xác định tọa độ hai điểm \(A\) và \(B\) sau đó kẻ đường thẳng đi qua hai điểm đó ta được đồ thị hàm số  \(y=ax+b \, \, (a\neq 0).\)

b) Đồ thị hàm số \(y=ax\) và \(y=a'x+b'\) cắt nhau tại \(A\) thì hoành độ điểm \(A\) là nghiệm của phương trình: \(ax=a'x+b'.\) Giải phương trình tìm \(x\), rồi thay vào một trong hai công thức hàm số trên tìm được tung độ điểm \(A\). 

c) +) Đường thẳng đi qua điểm \(B(0; b)\) song song với trục \(Ox\) có phương trình là: \(y=b\).

+ Diện tích tam giác \(ABC\):  \(S=\dfrac{1}{2}.h.a\)

với \(h\) là độ dài đường cao, \(a\) là độ dài cạnh ứng với đường cao.

Lời giải chi tiết

 

a) +) Hàm số \(y=x\):

Cho \(x= 1 \Rightarrow y=1 \Rightarrow M(1; 1)\)

\(\Rightarrow \) đồ thị hàm số \(y=x\) là đường thẳng đi qua gốc tọa độ \(O(0;0)\) và điểm \(M(1; 1)\).

+) Hàm số \(y=2x+2\) 

Cho \(x=0 \Rightarrow y=2.0+2=2 \Rightarrow B(0; 2)\).

Cho \(x=-1 \Rightarrow y=2.(-1)+2=-2+2=0 \Rightarrow (-1; 0)\)

Đồ thị hàm số \(y=2x+2\) là đường thẳng đi qua hai điểm có tọa độ là \(B(0; 2)\) và \((-1; 0)\).

Đồ thị như hình bên.

 

b) Tìm tọa độ giao điểm \(A\):

 Hoành độ giao điểm \(A\) là nghiệm của phương trình:

\(x = 2x + 2\)\(\Leftrightarrow x -2x = 2\)\(\Leftrightarrow  -x =2\) \(\Leftrightarrow  x =-2\)

Thay \(x=-2\) vào công thức hàm số \(y=x\), ta được: \(y=-2\)

Vậy tọa độ cần tìm là: \(A(-2; -2)\).

c) +) Tìm tọa độ điểm \(C\)

Đường thẳng qua \(B(0; 2)\) song song với trục hoành có phương trình là \(y=2\)

Vì điểm \(C\) thuộc đường thẳng \(y=2\) nên có tung độ là \(y=2\)

Vì \(C\) cũng thuộc đường thẳng \(y=x\) nên \(x=y=2\)

Vậy ta có tọa độ điểm \(C(2;2)\)

+) Tính diện tích tam giác \(ABC\):

Kẻ \(AE  \bot BC\), ta có \(AE=2+2=4\) và \(BC=2\) 

Tam giác \(\Delta{ABC}\) có \(AE\) là đường cao ứng với cạnh \(BC\).

Diện tích \(\Delta{ABC}\) là:

\(S=\dfrac{1}{2}.AE.BC=\dfrac{1}{2}.4.2=4\) \((cm^2)\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved