Bài 1. Khái niệm về khối đa diện
Bài 2. Phép đối xứng qua mặt phẳng và sự bằng nhau của các khối đa diện
Bài 3. Phép vị tự và sự đồng dạng của các khối đa diện. Các khối đa diện đều
Bài 4. Thể tích của khối đa diện
Ôn tập chương I - Khối đa diện và thể tích của chúng
Câu hỏi trắc nghiệm chương I - Khối đa diện và thể tích của chúng
Đề bài
Một hình trụ có bán kính đáy bằng \(R\) và chiều cao \(R\sqrt 3 \).
a) Tính diện tích xung quanh và diện tích toàn phần của hình trụ.
b) Tính thể tích của khối trụ giới hạn bởi hình trụ.
c) Cho hai điểm A và B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng \({30^0}\). Tính khoảng cách giữa AB và trục của hình trụ.
Lời giải chi tiết
a) Diện tích xung quanh của hình trụ
\({S_{xq}} = 2\pi R.R\sqrt 3 = 2\sqrt 3 \pi {R^2}\)
Diện tích toàn phần của hình trụ là:
\({S_{tp}} = {S_{xq}} + 2{S_{day}} = 2\sqrt 3 \pi {R^2} + 2\pi {R^2} \) \(= 2\left( {\sqrt 3 + 1} \right)\pi {R^2}\)
b) Thể tích của khối trụ \(V = \pi {R^2}.R\sqrt 3 = \sqrt 3 \pi {R^3}\).
c) Gọi \(O\) và \(O’\) là tâm của hai đường tròn đáy.
Kẻ \(AA’ // OO’\) (A’ nằm trên đáy dưới hình trụ)
Ta có: \(O'A' = R\,\,,\,\,AA' = R\sqrt 3 \) và \(\widehat {BAA'} = {30^0}\).
Vì \(OO’ // (ABA’)\) nên khoảng cách giữa \(OO’\) và \(AB\) bằng khoảng cách giữa \(OO’\) và \((ABA’)\).
Kẻ \(OH \bot A'B\) thì \(H\) là trung điểm của \(A’B\) (quan hệ vuông góc giữa đường kính và dây cung) và \(O'H \bot \left( {ABA'} \right)\).
Trong tam giác vuông \(AA’B\) ta có:
\(\tan {30^0} = {{A'B} \over {AA'}} \)
\(\Rightarrow A'B = AA'.\tan{30^0} \) \(= R\sqrt 3 .{1 \over {\sqrt 3 }} = R\)
Vậy tam giác \(BA’O’\) là tam giác đều cạnh \(R\) nên \(O'H = {{R\sqrt 3 } \over 2}\).
Chương 6. Bằng chứng và cơ chế tiến hóa
Đề kiểm tra 15 phút học kì 2
Đề kiểm tra 15 phút - Chương 9 – Hóa học 12
Chương 4. POLIME VÀ VẬT LIỆU POLIME
GIẢI TÍCH - TOÁN 12 NÂNG CAO