PHẦN HÌNH HỌC - TOÁN 8 TẬP 1

Bài 17 trang 121 SGK Toán 8 tập 1

Đề bài

Cho tam giác \(AOB\) vuông tại \(O\) với đường cao \(OM\) (h.\(131\)). Hãy giải thích vì sao ta có đẳng thức:

               \(AB. OM = OA. OB.\)

Phương pháp giải - Xem chi tiết

Áp dụng cách tính diện tích tam giác thường và tam giác vuông.

Lời giải chi tiết

Ta có cách tính diện tích tam giác \(AOB\) với đường cao \(OM\) và cạnh đáy \(AB:\)

         \(S = \dfrac{{OM.AB}}{2}\) 

Ta lại có cách tính diện tích tam giác \(AOB\) vuông với hai cạnh góc vuông \(OA, OB\) là

         \(S = \dfrac{{OA.OB}}{2}\)

\( \Rightarrow \dfrac{{OM.AB}}{2} = \dfrac{{OA.OB}}{2}\,(=S)\)

\(\Rightarrow OM.AB = OA.OB.\).

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved