Bài 18 trang 170 Tài liệu dạy – học Toán 7 tập 1

Đề bài

Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.

a) Kẻ \(HF \bot AB,HF \bot AC(E \in AB,F \in AC).\)  Chứng minh rằng AE = AF.

b) Chứng minh rằng EF // BC.

Lời giải chi tiết

a) Tam giác ABC cân tại A (gt) => AB = AC và \(\widehat {ABC} = \widehat {ACB}.\)

Mà \(\widehat {ABH} + \widehat {BAH} = {90^0}(\Delta ABH\)  vuông tại H)

Và \(\widehat {ACH} + \widehat {CAH} = {90^0}(\Delta ACH\)  vuông tại H).

Nên  \(\widehat {BAH} = \widehat {CAH}.\)

Xét tam giác AEH vuông tại E \((HE \bot AB)\)

Và tam giác AFH vuông tại F \((HF \bot AC)\)   có:

AH là cạnh chung.

\(\widehat {EAH} = \widehat {FAH}\)    (chứng minh trên).

Do đó: \(\Delta AEH = \Delta AFH\)  (cạnh huyền - góc nhọn) => AE = AF.

b) Tam giác AEF có: AE = AF => tam giác AEF cân tại A\(\widehat {AEF} = \widehat {AFE}.\)  

Mà \(\widehat {AEF} + \widehat {AFE} + \widehat {EAF} = {180^0}\)   (tổng ba góc của một tam giác).

Nên \(\widehat {AEF} + \widehat {AEF} + \widehat {EAF} = {180^0} \to 2\widehat {AEF} + \widehat {EAF} = {180^0} \Rightarrow \widehat {AEF} = {{{{180}^0} - \widehat {EAF}} \over 2}(1)\)

Tam giác ABC có: \(\widehat {ABC} + \widehat {BAC} + \widehat {ACB} = {180^0}\)   mà \(\widehat {ABC} = \widehat {ACB}(\Delta ABC\)  cân tại A)

Nên \(\widehat {ABC} + \widehat {ABC} + \widehat {BAC} = {180^0} \Rightarrow 2\widehat {ABC} + \widehat {BAC} = {180^0} \Rightarrow \widehat {ABC} = {{{{180}^0} - \widehat {BAC}} \over 2}(2)\)

Từ (1) và (2) suy ra: \(\widehat {AEF} = \widehat {ABC}.\)

Mà góc AEF và ABC đồng vị. Do đó EF // BC.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved