Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng Căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)
Bài 8. Rút gọn biểu thức chứa căn bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I – Căn bậc hai. Căn bậc ba
Đề kiểm tra 15 phút - Chương I - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương I - Đại số 9
Bài 1. Nhắc lại và bổ sung các khái niệm về hàm số
Bài 2. Hàm số bậc nhất
Bài 3. Đồ thị của hàm số y = ax + b (a ≠ 0)
Bài 4. Đường thẳng song song và đường thẳng cắt nhau
Bài 5. Hệ số góc của đường thẳng y = ax + b (a ≠ 0).
Ôn tập chương II – Hàm số bậc nhất
Đề kiểm tra 15 phút - Chương 2 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Đại số 9
Đề bài
a) Biết rằng với \(x = 4\) thì hàm số \(y = 3x + b\) có giá trị là \(11\). Tìm \(b\). Vẽ đồ thị của hàm số với giá trị \(b\) vừa tìm được.
b) Biết rằng đồ thị của hàm số \(y = ax + 5\) đi qua điểm \(A (-1; 3)\). Tìm a. Vẽ đồ thị của hàm số với giá trị \(a\) vừa tìm được.
Phương pháp giải - Xem chi tiết
a) Thay giá trị của \(x,\ y\) đã biết vào công thức hàm số ta tìm được \(b\).
b) Thay tọa độ điểm \(A\) vào công thức hàm số ta tìm được \(a\).
* Cách vẽ đồ thị hàm số \(y=ax+b,\ (a \ne 0)\): Đồ thị hàm số \(y=ax+b \, \, (a\neq 0)\) là đường thẳng:
+) Cắt trục hoành tại điểm \(A(-\dfrac{b}{a}; \, 0).\)
+) Cắt trục tung tại điểm \(B(0;b).\)
Xác định tọa độ hai điểm \(A\) và \(B\) sau đó kẻ đường thẳng đi qua hai điểm đó ta được đồ thị hàm số \(y=ax+b \, \, (a\neq 0).\)
Lời giải chi tiết
a) Thay \(x = 4\) và \(y = 11\) vào \(y = 3x +b\), ta được:
\(11 = 3.4 + b\)
\(\Leftrightarrow 11=12+b\)
\(\Leftrightarrow 11- 12 =b\)
\(\Leftrightarrow b=-1\).
Khi đó hàm số đã cho trở thành: \(y = 3x – 1\).
+ Cho \(x=0 \Rightarrow y=3.0 - 1=-1 \Rightarrow A(0; -1)\)
Cho \( y=0 \Rightarrow 0=3.x - 1 \Rightarrow x=\dfrac{1}{3} \Rightarrow B{\left(\dfrac{1}{3}; 0 \right)}\)
Do đó đồ thị hàm số \(y=3x+b\) là đường thẳng đi qua \(2\) điểm \(A(0;-1)\) và \(B\left( {\dfrac{1}{3};0} \right)\). Ta có hình vẽ sau:
b) Thay \(x= -1 \) thì \(y=3\) vào công thức hàm số \(y=ax+5\), ta được:
\( 3= a.(-1) + 5 \)
\(\Leftrightarrow 3 = -a +5\)
\(\Leftrightarrow a = 5-3\)
\(\Leftrightarrow a = 2\)
Khi đó hàm số đã cho trở thành: \(y = 2x + 5\).
+ Cho \(x = 0 \Rightarrow y = 2.0 +5=5 \Rightarrow A(0; 5)\)
Cho \(y=0 \Rightarrow 0= 2. x +5 \Rightarrow x=\dfrac{-5}{2} \Rightarrow B {\left(-\dfrac{5}{2}; 0 \right)}\)
Do đó đồ thị hàm số là đường thẳng đi qua hai điểm \(A(0; 5)\) và \(B \left( { - \dfrac{5}{2};0} \right)\).
PHẦN I: ĐIỆN HỌC
Đề kiểm tra 15 phút - Chương 4 - Sinh 9
CHƯƠNG II. NHIỄM SẮC THỂ
Bài 3. Phân bố dân cư và các loại hình quần cư
Đề kiểm tra 45 phút (1 tiết) - Chương 1 - Hóa học 9