PHẦN ĐẠI SỐ - TOÁN 9 TẬP 1

Bài 18 trang 52 sgk Toán 9 tập 1

Đề bài

a) Biết rằng với \(x = 4\) thì hàm số \(y = 3x + b\) có giá trị là \(11\). Tìm \(b\). Vẽ đồ thị của hàm số với giá trị \(b\) vừa tìm được.

b) Biết rằng đồ thị của hàm số \(y = ax + 5\) đi qua điểm \(A (-1; 3)\). Tìm a. Vẽ đồ thị của hàm số với giá trị \(a\) vừa tìm được.

Phương pháp giải - Xem chi tiết

a) Thay giá trị của \(x,\ y\) đã biết vào công thức hàm số ta tìm được \(b\).

b) Thay tọa độ điểm \(A\) vào công thức hàm số ta tìm được \(a\).

* Cách vẽ đồ thị hàm số \(y=ax+b,\ (a \ne 0)\): Đồ thị hàm số \(y=ax+b \, \, (a\neq 0)\) là đường thẳng:

+) Cắt trục hoành tại điểm \(A(-\dfrac{b}{a}; \, 0).\) 

+) Cắt trục tung tại điểm \(B(0;b).\) 

Xác định tọa độ hai điểm \(A\) và \(B\) sau đó kẻ đường thẳng đi qua hai điểm đó ta được đồ thị hàm số  \(y=ax+b \, \, (a\neq 0).\)

Lời giải chi tiết

 

a)  Thay \(x = 4\)  và  \(y = 11\) vào \(y = 3x +b\), ta được:

\(11 = 3.4 + b\) 

\(\Leftrightarrow 11=12+b\)

\(\Leftrightarrow 11- 12 =b\)

\(\Leftrightarrow b=-1\).

Khi đó hàm số đã cho trở thành: \(y = 3x – 1\).

+ Cho \(x=0 \Rightarrow y=3.0 - 1=-1 \Rightarrow A(0; -1)\)

    Cho \( y=0  \Rightarrow 0=3.x - 1 \Rightarrow x=\dfrac{1}{3} \Rightarrow B{\left(\dfrac{1}{3}; 0 \right)}\)

Do đó đồ thị hàm số \(y=3x+b\)  là đường thẳng đi qua \(2\) điểm \(A(0;-1)\) và \(B\left( {\dfrac{1}{3};0} \right)\). Ta có hình vẽ sau:

 

b) Thay \(x= -1 \) thì \(y=3\) vào công thức hàm số \(y=ax+5\), ta được: 

\( 3= a.(-1) + 5 \)

\(\Leftrightarrow 3 = -a +5\)

\(\Leftrightarrow a = 5-3\) 

\(\Leftrightarrow a = 2\)

Khi đó hàm số đã cho trở thành: \(y = 2x + 5\).

+ Cho \(x = 0 \Rightarrow y = 2.0 +5=5 \Rightarrow A(0; 5)\)

    Cho \(y=0 \Rightarrow 0= 2. x +5 \Rightarrow x=\dfrac{-5}{2} \Rightarrow B {\left(-\dfrac{5}{2}; 0 \right)}\)

Do đó đồ thị hàm số là đường thẳng đi qua hai điểm \(A(0; 5)\) và \(B \left( { - \dfrac{5}{2};0} \right)\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved