CHƯƠNG IV. HÀM SỐ BẬC HAI VÀ PHƯƠNG TRÌNH BẬC HAI

Bài 19 trang 140 Tài liệu dạy – học Toán 9 tập 2

Đề bài

Cho phương trình \({x^2} + \sqrt 3 x - \sqrt 5  = 0\) . Không giải phương trình, hãy chứng minh phương trình trên có hai nghiệm x1, x2 và tính giá trị của các biểu thức sau:

a) \(\dfrac{1}{{{x_1}^2}} + \dfrac{1}{{x_2^2}}\)

b) \(x_1^2 + x_2^2\)

c) \(\dfrac{1}{{{x_1}^3}} + \dfrac{1}{{x_2^3}}\)

d) \(\sqrt {{x_1}}  + \sqrt {{x_2}} \)

Phương pháp giải - Xem chi tiết

Phương trình bậc hai \(a{x^2} + bx + c = 0\,\,\left( {a \ne 0} \right)\) có 2 nghiệm phân biệt \({x_1};{x_2}\). Theo định lí Vi-ét ta có: \(\left\{ \begin{array}{l}S = {x_1} + {x_2} = \dfrac{{ - b}}{a}\\P = {x_1}{x_2} = \dfrac{c}{a}\end{array} \right.\).

Lời giải chi tiết

Phương trình \({x^2} + \sqrt 3 x - \sqrt 5  = 0\) có \(ac =  - \sqrt 5  < 0 \Rightarrow \) Phương trình có 2 nghiệm phân biệt \({x_1};{x_2}\).

Áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} =  - \sqrt 3 \\{x_1}{x_2} =  - \sqrt 5 \end{array} \right.\).

a) \(\dfrac{1}{{{x_1}^2}} + \dfrac{1}{{x_2^2}} = \dfrac{{x_1^2 + x_2^2}}{{x_1^2x_2^2}} \)\(\,= \dfrac{{{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2}}}{{{{\left( {{x_1}{x_2}} \right)}^2}}} = \dfrac{{3 + 2\sqrt 5 }}{5}\)

b) \(x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2}\)\(\, = 3 + 2\sqrt 5 \)

c)

\(\begin{array}{l}\dfrac{1}{{x_1^3}} + \dfrac{1}{{x_2^3}} = \dfrac{{x_1^3 + x_2^3}}{{x_1^3x_2^3}}\\ = \dfrac{{{{\left( {{x_1} + {x_2}} \right)}^3} - 3{x_1}{x_2}\left( {{x_1} + {x_2}} \right)}}{{{{\left( {{x_1}{x_2}} \right)}^3}}}\\ = \dfrac{{{{\left( { - \sqrt 3 } \right)}^3} - 3.\left( { - \sqrt 5 } \right).\left( { - \sqrt 3 } \right)}}{{{{\left( { - \sqrt 5 } \right)}^3}}}\\ = \dfrac{{3\sqrt 3  + 3\sqrt {15} }}{{5\sqrt 5 }} = \dfrac{{3\sqrt {15}  + 15\sqrt 3 }}{{25}}\end{array}\)

d) Ta có \({x_1}{x_2} =  - \sqrt 5  \Rightarrow \)Phương trình có 2 nghiệm phân biệt trái dấu \( \Rightarrow \) Biểu thức \(\sqrt {{x_1}}  + \sqrt {{x_2}} \) không xác định.

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved