Bài 19 trang 8 SBT Hình học 12 Nâng cao

Đề bài

Cho hai hình tứ diện ABCD và A’B’C’D’ có các cạnh tương ứng song song: \(AB//A'B',AC//A'C',AD//A'D',\) \(CB//C'B',BD//B'D',DC//D'C'.\) Chứng minh rằng hai tứ diện nói trên đồng dạng.

Lời giải chi tiết

Vì \(AB//A'B'\) nên có số \(k \ne 0\) sao cho \(\overrightarrow {AB}  = k\overrightarrow {A'B'} \). Ta chứng minh rằng khi đó, ta cũng có \(\overrightarrow {AC}  = k\overrightarrow {A'C'} ,\overrightarrow {AD}  = k\overrightarrow {A'D'} ,\overrightarrow {CB}  = k\overrightarrow {C'B'} ,\)

\(BD = k\overrightarrow {B'D'} ,\overrightarrow {DC}  = k\overrightarrow {D'C'} .\)

Thật vậy, hai tam giác ABC và A’B’C’ có các cạnh tương ứng song song nên ta phải có các số l và m sao cho \(\overrightarrow {AC}  = l\overrightarrow {A'C'} \) và \(\overrightarrow {CB}  = m\overrightarrow {C'B'} \). Khi đó :

\(\eqalign{  & \overrightarrow {AB}  = k\overrightarrow {A'B'}  \Leftrightarrow \overrightarrow {AC}  - \overrightarrow {BC}  = k\left( {\overrightarrow {A'C'}  - \overrightarrow {B'C'} } \right)  \cr  &  \Leftrightarrow l\overrightarrow {A'C'}  - m\overrightarrow {B'C'}  = k\overrightarrow {A'C'}  - k\overrightarrow {B'C'}   \cr  &  \Leftrightarrow \left( {l - k} \right)\overrightarrow {A'C'}  = \left( {m - k} \right)\overrightarrow {B'C'} . \cr} \)

Vì hai vectơ \(\overrightarrow {A'C'} \) và \(\overrightarrow {B'C'} \) không cùng phương nên đẳng thức trên xảy ra khi và chỉ khi \(l - k = m - k = 0\), tức là l=m=k, vậy \(\overrightarrow {AC}  = k\overrightarrow {A'C'} \) và \(\overrightarrow {BC}  = k\overrightarrow {B'C'} \).

Các đẳng thức còn lại được chứng minh tương tự.

Xét trường hợp \(k = 1\). Khi đó \(\overrightarrow {AB}  = \overrightarrow {A'B'} ,\overrightarrow {BC}  = \overrightarrow {B'C'} ,...\)nên

\(\overrightarrow {AA'}  = \overrightarrow {BB'}  = \overrightarrow {CC'}  = ...\)

Suy ra phép tịnh tiến theo vectơ \(\overrightarrow v  = \overrightarrow {AA'} \) biến tứ diện ABCD thành tứ diện A’B’C’D’.

Nếu \(k \ne 1\) thì hai đường thẳng AA’ và BB’ cắt nhau tại một điểm O nào đó.

Khi đó, rõ ràng phép vị tự V tâm O tỉ số \({1 \over k}\) biến tứ diện ABCD thành tứ diện A’B’C’D’.

Vậy trong cả hai trường hợp nói trên, hai tứ diện ABCD và A’B’C’D’ đồng dạng.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved