1. Nội dung câu hỏi
Cho a, b là những số thực dương. Viết các biếu thức sau dưới dạng lũy thừa với số mũ hữu tỉ:
a, \({a^{\frac{1}{3}}}.\sqrt a \).
b, \({b^{\frac{1}{2}}}.{b^{\frac{1}{3}}}.\sqrt[6]{b}\).
c, \({a^{\frac{4}{3}}}:\sqrt[3]{a}\).
d, \(\sqrt[3]{b}:{b^{\frac{1}{6}}}\).
2. Phương pháp giải
Áp dụng tính chất lũy thừa để tính.
3. Lời giải chi tiết
a) \({a^{\frac{1}{3}}}.\sqrt a = {a^{\frac{1}{3}}}.{a^{\frac{1}{2}}} = {a^{\frac{1}{3} + \frac{1}{2}}} = {a^{\frac{5}{6}}} = \sqrt[6]{{{a^5}}}\).
b) \({b^{\frac{1}{2}}}.{b^{\frac{1}{3}}}.\sqrt[6]{b} = {b^{\frac{1}{2}}}.{b^{\frac{1}{3}}}.{b^{\frac{1}{6}}} = {b^{\frac{1}{2} + \frac{1}{3} + \frac{1}{6}}} = {b^1} = b\).
c) \({a^{\frac{4}{3}}}:\sqrt[3]{a} = {a^{\frac{4}{3}}}:{a^{\frac{1}{3}}} = {a^{\frac{4}{3} - \frac{1}{3}}} = {a^1} = a\).
d) \(\sqrt[3]{b}:{b^{\frac{1}{6}}} = {b^{\frac{1}{3}}}:{b^{\frac{1}{6}}} = {b^{\frac{1}{3} - \frac{1}{6}}} = {b^{\frac{1}{6}}} = \sqrt[6]{b}\).
SOẠN VĂN VĂN 11 TẬP 2
Chủ đề 7: Quyền bình đẳng của công dân
Unit 9: The Post Office - Bưu điện
Bài 12: Tiết 1: Khái quát về Ô-xtrây-li-a - Tập bản đồ Địa lí 11
Chương 5: Dẫn xuất halogen - Ancohol - Phenol
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11