Bài 12. Tổng các góc trong một tam giác
Bài 15. Các trường hợp bằng nhau của tam giác vuông
Bài 16. Tam giác cân. Đường trung trực của đoạn thẳng
Bài tập cuối chương IV
Bài 13. Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác
Luyện tập chung trang 66, 67, 68
Bài 14. Trường hợp bằng nhau thứ hai và thứ ba của tam giác
Luyện tập chung trang 76
Luyện tập chung trang 60, 61, 62
Đề bài
Bài 2(3.25). Hãy chứng minh định lí ở ví dụ trang 56 Toán 7, tập một: “ Một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng vuông góc với đường thẳng còn lại”. Trong chứng minh đó ta đã sử dụng những điều đúng đã biết nào?
Phương pháp giải - Xem chi tiết
Tiên đề Euclid
Lời giải chi tiết
Giả thiết, kết luận được viết ở ví dụ trang 56 SGK.
GT | d, d’, d’’ là các đường thẳng, d’ // d’’, \(d \bot d'\) |
KL | \(d \bot d''.\) |
+ Nếu d không cắt d’’ thì d song song với d’’ nên qua giao điểm A của d và d’ có hai đường thẳng là d và d’ cùng song song với d’’. Theo tiên đề Euclid, d phải trùng với d’, trong khi giả thiết thì d khác d’ vì vuông góc với d’.
Vậy d phải cắt d’ tại một điểm B.
+ d cắt d’, d’’ tạo thành 8 góc, trong đó 4 góc tại A đều bằng \({90^o}\). Từ định lí về tính chất hai đường thẳng song song (bài 11 trang 52 Toán 7, tập một) khi d cắt hai đường thẳng song song d ‘ và d’’ thì hai góc đồng vị bằng nhau nên trong bốn góc còn lại tại B có một góc bằng \({90^o}\). Vậy d vuông góc với d’’.
Chương 4: Tam giác bằng nhau
Review 4
Chương VII. Biểu thức đại số và đa thức một biến
Unit 1. My world
Bài 2. Bài học cuộc sống
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Tài liệu Dạy - học Toán Lớp 7