Bài 2 trang 50 SGK Hình học 12

Đề bài

Cho tứ diện \(ABCD\) có cạnh \(AD\) vuông góc với mặt phẳng \((ABC)\) và cạnh \(BD\) vuông góc với cạnh \(BC\). Biết \(AB = AD = a\), tính diện tích xung quanh và thể tích của khối nón được tạo thành khi quay đường gấp khúc \(BDA\) quanh cạnh \(AB\).

Phương pháp giải - Xem chi tiết

Vì \(∆ABD\) vuông góc tại \(A\), nên khi quay \(BDA\) quanh \(AB\) ta được hình nón tròn xoay đường cao \(h=AB \) và bán kính đáy bằng \(r=AD.\)

Sử dụng công thức tính diện tích xung quanh và thể tích khối nón: \({S_{xq}} = \pi rl,\,\,V = \dfrac{1}{3}\pi {r^2}h\)

Lời giải chi tiết

 

\(AD \bot \left( {ABC} \right) \Rightarrow AD \bot AB \Rightarrow \Delta ABD\) vuông tại A.

Vì \(∆ABD\) vuông góc tại \(A\), nên khi quay \(BDA\) quanh \(AB\) ta được hình nón tròn xoay đường cao \(h=AB = a\) và bán kính đáy bằng \(r=AD =a\).

Gọi \(l\) là độ dài đường sinh của hình nón ta có: \(l = \sqrt {{r^2} + {h^2}}  = \sqrt {{a^2} + {a^2}}  = a\sqrt 2 \)

Vậy \({S_{xq}} = \pi rl = \pi .a.a\sqrt 2  = \pi {a^2}\sqrt 2 ,\) \(V = \dfrac{1}{3}\pi {r^2}h = \dfrac{1}{3}\pi .{a^2}.a = \dfrac{{\pi {a^3}}}{3}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved