Bài 1. Đại cương về đường thẳng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song
Đề bài
Cho hình hộp \(ABCD.A'B'C'D'\). Chứng minh rằng:
a) \(\overrightarrow{AB}\) + \(\overrightarrow{B'C'}\) + \(\overrightarrow{DD'}\) = \(\overrightarrow{AC'}\);
b) \(\overrightarrow{BD}\) - \(\overrightarrow{D'D}\) - \(\overrightarrow{B'D'}\) = \(\overrightarrow{BB'}\);
c) \(\overrightarrow{AC}\) + \(\overrightarrow{BA'}\) + \(\overrightarrow{DB}\) + \(\overrightarrow{C'D}\) = \(\overrightarrow{0}\).
Phương pháp giải - Xem chi tiết
Dựa vào các vector bằng nhau và quy tắc ba điểm.
Lời giải chi tiết
a) Ta có: \(\overrightarrow {B'C'} = \overrightarrow {BC} ;\overrightarrow {DD'} = \overrightarrow {CC'} \)
\(\overrightarrow{AB}\) + \(\overrightarrow{B'C'}\) + \(\overrightarrow{DD'}\)
= \(\overrightarrow{AB}\) + \(\overrightarrow{BC}\) + \(\overrightarrow{CC'}\)
\(= \overrightarrow {AC} + \overrightarrow {CC'} \)
= \(\overrightarrow{AC'}\);
b) \(\overrightarrow{BD}\) - \(\overrightarrow{D'D}\) - \(\overrightarrow{B'D'}\)
= \(\overrightarrow{BD}\) + \(\overrightarrow{DD'}\) + \(\overrightarrow{D'B'}\)
\( = \overrightarrow {BD'} + \overrightarrow {D'B'} \)
= \(\overrightarrow{BB'}\);
c) Ta có: \(BA'D'C\) là hình bình hành \( \Rightarrow \overrightarrow {BA'} = \overrightarrow {CD'} \)
\(BDD'B'\) là hình bình hành \( \Rightarrow \overrightarrow {DB} = \overrightarrow {D'B'} \)
\(AB'C'D\) là hình bình hành \( \Rightarrow \overrightarrow {C'D} = \overrightarrow {B'A} \)
\(\overrightarrow{AC}\) + \(\overrightarrow{BA'}\) + \(\overrightarrow{DB}\) + \(\overrightarrow{C'D}\)
= \(\overrightarrow{AC}\) + \(\overrightarrow{CD'}\) + \(\overrightarrow{D'B'}\) + \(\overrightarrow{B'A}\)
\( = \overrightarrow {AD'} + \overrightarrow {D'B'} + \overrightarrow {B'A} \)
\(= \overrightarrow {AB'} + \overrightarrow {B'A} \)
= \(\overrightarrow{0}\).
Chủ đề 2. Cảm ứng ở sinh vật
Vocabulary Expansion
Phần ba. Sinh học cơ thể
PHẦN 3. LỊCH SỬ VIỆT NAM (1858 - 1918)
CHƯƠNG IV- TỪ TRƯỜNG
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11