Bài 1. Đại cương về đường thẳng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song
Đề bài
Cho ba vecto \(\overrightarrow a ;\,\overrightarrow b ;\,\overrightarrow c \) trong không gian. Chứng minh rằng nếu \(m\overrightarrow a + n\overrightarrow b + p\overrightarrow c = \overrightarrow 0 \) và một trong ba số \(m, n, p\) khác không thì ba vecto \(\overrightarrow a ;\,\overrightarrow b ;\,\overrightarrow c \) đồng phẳng.
Phương pháp giải - Xem chi tiết
Ba vecto đồng phẳng nếu ta có thể biểu diễn một vecto theo hai vecto còn lại.
Lời giải chi tiết
Giả sử \(p ≠ 0\) ta có:
\(\eqalign{
& m\overrightarrow a + n\overrightarrow b + p\overrightarrow c = \overrightarrow 0 \cr
& \Rightarrow m\overrightarrow a + n\overrightarrow b = - p\overrightarrow c \cr
& \overrightarrow c = {{ - m} \over p}\overrightarrow a + {{ - n} \over p}\overrightarrow b \cr} \)
Do đó, ba vecto \(\overrightarrow a ;\,\overrightarrow b ;\,\overrightarrow c \) đồng phẳng theo định lí 1.
Chủ đề 2. Sóng
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Toán lớp 11
Bài 19: Carboxylic acid
CHƯƠNG VI - KHÚC XẠ ÁNH SÁNG
Chuyên đề 2: Trải nghiệm, thực hành hóa học hữu cơ
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11