PHẦN HÌNH HỌC - TOÁN 8 TẬP 1

Bài 20 trang 122 SGK Toán 8 tập 1

Đề bài

Vẽ hình chữ nhật có một cạnh bằng một cạnh của một tam giác cho trước và có diện tích bằng diện tích của tam giác đó. Từ đó suy ra một cách chứng minh khác về công thức tính diện tích tam giác.

Phương pháp giải - Xem chi tiết

Diện tích tam giác bằng nửa tích của một cạnh với chiều cao ứng với cạnh đó.

Lời giải chi tiết

Cho tam giác \(ABC\) với đường cao \(AH\)

Gọi \(M, N, I\) là trung điểm của \(AB, AC, AH.\)

Lấy \(E\) đối xứng với \(I\) qua \(M, D\) đối xứng với \(I\) qua \(N.\)

\(⇒\) Hình chữ nhật \(BEDC\) là hình cần dựng.

Thật vậy: 

Vì \(E\) đối xứng với \(I\) qua \(M\) nên \(M\) là trung điểm của \(EI\)

Do đó, \(EM=MI\)

Xét hai tam giác \(∆EBM\) và \(∆IAM\) có:

+) \(MA=MB\) (do M là trung điểm của AB) 

+) \(\widehat {BME} = \widehat {AMI}\) (đối đỉnh)

+) \(EM=MI\) (chứng minh trên)

\( \Rightarrow ∆EBM = ∆IAM\) ( c-g-c)

\( \Rightarrow {S_{IAM}} = {S_{EBM}}\)

Vì \(D\) đối xứng với \(I\) qua \(N\) nên \(N\) là trung điểm của \(DI\)

Do đó, \(NI=ND\)

Xét hai tam giác \(∆IAN\) và \(∆DCN\) có:

+) \(IN=ND\) (chứng minh trên)

+) \(\widehat {ANI} = \widehat {DNC}\) (đối đỉnh)

+) \(AN = NC \) (do N là trung điểm của AC)

\( \Rightarrow ∆IAN = ∆DCN\) ( c-g-c)

\( \Rightarrow {S_{DCN}} = {S_{IAN}}\)

Ta có: 

\({S_{BEM}} + {S_{BMNC}} + {S_{N{\rm{D}}C}} = {S_{AMI}} \)\(+ {S_{BMNC}} + {S_{AIN}}\)

\(\Rightarrow {S_{ABC}}={S_{EB{\rm{D}}C}} \)\( =BE.BC= \dfrac{1}{2}AH.BC \) (vì \(BE=IH=\dfrac{AH}2)\)

Ta đã tìm được công thức tính diện tích tam giác bằng một phương pháp khác. 

Chú ý: Theo cách dựng trên ta có \(BEDC\) là hình chữ nhật vì: 

+) MN là đường trung bình của tam giác ABC nên \(MN//BC\) hay \(ED//BC\)

+) Vì \(∆EBM = ∆IAM\) nên \(\widehat {EBM}=\widehat{MAI}\) mà hai góc này ở vị trí so le trong nên \(EB//AI\) hay \(EB//AH\)

+) Vì \(∆IAN = ∆DCN\) nên \(\widehat {DCN}=\widehat{NAI}\) mà hai góc này ở vị trí so le trong nên \(DC//AI\)

Do đó \(EB//DC\) và \(ED//BC\) nên \(BEDC\) là hình bình hành

Mà \(AH\bot BC, EB//AH\) nên \(EB\bot BC,\) suy ra \(BEDC\) là hình chữ nhật. 

 

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved