Đề bài
Cho phương trình \({x^2} - 2mx - {m^2} - 1 = 0\) (1) với x là ẩn số.
a) Chứng minh phương trình (1) luôn luôn có hai nghiệm phân biệt với mọi giá trị của m.
b) Hãy tìm một hệ thức liên hệ giữa hai nghiệm x1, x2 mà không phụ thuộc vào m.
c) Tìm m để (1) có hai nghiệm thỏa mãn hệ thức \(\dfrac{{{x_1}}}{{{x_2}}} + \dfrac{{{x_2}}}{{{x_1}}} = - \dfrac{5}{2}\)
Phương pháp giải - Xem chi tiết
a) Chứng minh \(\Delta ' > 0\,\,\forall m\).
b) Áp dụng định lí Vi-ét. Rút m từ 1 trong 2 phương trình thay vào phương trình còn lại.
c) Áp dụng định lí Vi-ét.
Lời giải chi tiết
a) Ta có: \(\Delta ' = {m^2} - 1\left( { - {m^2} - 1} \right) \)\(\,= {m^2} + {m^2} + 1 \)\(\,= 2{m^2} + 1 > 0\,\,\forall m \Rightarrow \) Phương trình (1) luôn luôn có hai nghiệm phân biệt với mọi giá trị của m.
b) Áp dụng định lí Vi-ét ta có:
\(\left\{ \begin{array}{l}{x_1} + {x_2} = 2m\\{x_1}{x_2} = - {m^2} + 1\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m = \dfrac{{{x_1} + {x_2}}}{2}\\{x_1}{x_2} = - {m^2} + 1\end{array} \right. \\ \Rightarrow {x_1}{x_2} = - \dfrac{{{{\left( {{x_1} + {x_2}} \right)}^2}}}{4} + 1\).
\( \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} + 4{x_1}{x_2} - 4 = 0\).
c) Ta có:
\(\begin{array}{l}\dfrac{{{x_1}}}{{{x_2}}} + \dfrac{{{x_2}}}{{{x_1}}} = - \dfrac{5}{2} \Leftrightarrow \dfrac{{x_1^2 + x_2^2}}{{{x_1}{x_2}}} = - \dfrac{5}{2}\\ \Leftrightarrow \dfrac{{{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2}}}{{{x_1}{x_2}}} = - \dfrac{5}{2}\\ \Leftrightarrow \dfrac{{4{m^2} + 2{m^2} - 2}}{{ - {m^2} + 1}} = - \dfrac{5}{2}\\ \Leftrightarrow 12{m^2} - 4 = 5{m^2} - 5 \Leftrightarrow 7{m^2} = - 1\end{array}\)
(vô nghiệm).
Vậy không có giá trị của m thỏa mãn yêu cầu bài toán.
Bài 3: Dân chủ và kỷ luật
PHẦN I: ĐIỆN HỌC
Đề thi, đề kiểm tra học kì 1 - Địa lí 9
CHƯƠNG II. MỘT SỐ VẤN ĐỀ XÃ HỘI CỦA TIN HỌC
Tải 30 đề ôn tập học kì 1 Văn 9