PHẦN HÌNH HỌC - TOÁN 9 TẬP 1

Bài 21 trang 111 sgk Toán 9 - tập 1

Đề bài

Cho tam giác \(ABC\) có \(AB=3,\ AC=4,\ BC=5\). Vẽ đường tròn \((B;BA)\). Chứng minh rằng \(AC\) là tiếp tuyến của đường tròn. 

Phương pháp giải - Xem chi tiết

+) Định lí Pytago đảo: Tam giác \(ABC\) có \(BC^2=AC^2+AB^2\) thì là tam giác vuông tại \(A\).

+) Nếu một đường thẳng đi qua một điểm của đường tròn và vuông góc với bán kính đi qua điểm đó thì đường thẳng ấy là một tiếp tuyến của đường tròn. 

Lời giải chi tiết

 

Xét tam giác \(ABC\) ta có:

\(BC^2=AB^2+AC^2\) (vì \(5^2=3^2+4^2\)

Theo định lý Pytago đảo, ta có tam giác \(ABC\) vuông tại \(A\).

\(\Rightarrow\) \(AB \bot AC\) tại \(A\).

Xét đường tròn (B;BA) có đường thẳng AC đi qua điểm A thuộc đường tròn và AC vuông góc với bán kính BA nên \(AC\) là tiếp tuyến của đường tròn.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved