Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng Căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)
Bài 8. Rút gọn biểu thức chứa căn bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I – Căn bậc hai. Căn bậc ba
Đề kiểm tra 15 phút - Chương I - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương I - Đại số 9
Bài 1. Nhắc lại và bổ sung các khái niệm về hàm số
Bài 2. Hàm số bậc nhất
Bài 3. Đồ thị của hàm số y = ax + b (a ≠ 0)
Bài 4. Đường thẳng song song và đường thẳng cắt nhau
Bài 5. Hệ số góc của đường thẳng y = ax + b (a ≠ 0).
Ôn tập chương II – Hàm số bậc nhất
Đề kiểm tra 15 phút - Chương 2 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Đại số 9
Đề bài
Cho hàm số bậc nhất \(y = mx + 3\) và \(y = (2m + 1)x - 5\). Tìm giá trị của m để đồ thị của hai hàm số đã cho là:
a) Hai đường thẳng song song với nhau;
b) Hai đường thẳng cắt nhau.
Phương pháp giải - Xem chi tiết
a) + Điều kiện để hàm số đã cho là hàm bậc nhất là \(a \ne 0\).
+ Hai đường thẳng: \((d)\): \(y=ax+b\), \((a \ne 0)\) và \((d')\): \(y=a'x+b'\) \((a' \ne 0)\) song song khi và chỉ khi \(a = a'\) và \(b \ne b'\)
b) + Điều kiện để hàm số đã cho là hàm bậc nhất là \(a \ne 0\).
+ Hai đường thẳng: \((d)\): \(y=ax+b\), \((a \ne 0)\) và \((d')\): \(y=a'x+b'\) \((a' \ne 0)\) cắt nhau khi và chỉ khi \( a \ne a'\)
Lời giải chi tiết
Ta có:
+ \(y = mx + 3 \Rightarrow \left\{ \matrix{
a = m \hfill \cr
b = 3 \hfill \cr} \right.\)
+ \(y = (2m + 1)x - 5 \Rightarrow \left\{ \matrix{
a' = 2m + 1 \hfill \cr
b' = - 5 \hfill \cr} \right.\)
+ Để hai hàm số đã cho là hàm bậc nhất thì ta cần có các hệ số \(a\) và \(a'\) khác \(0\), tức là:
\(\left\{ \matrix{
m \ne 0 \hfill \cr
2m + 1 \ne 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
m \ne 0 \hfill \cr
2m \ne - 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
m \ne 0 \hfill \cr
m \ne \dfrac{-1}{2} \hfill \cr} \right.\)
a) Để hai đường thẳng song song thì:
\(\left\{ \matrix{
{a} = {a'} \hfill \cr
{b} \ne {b'} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
m = 2m + 1 \hfill \cr
3 \ne - 5 \hfill \cr} \right.\)
\( \Leftrightarrow \left\{ \matrix{
m - 2m = 1 \hfill \cr
3 \ne - 5 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
m = - 1 (thỏa \ mãn \ điều \ kiện)\hfill \cr
3 \ne - 5 (luôn\ đúng) \hfill \cr} \right.\)
Vậy \(m=-1\) thì hai đường thẳng trên song song với nhau.
b) Để hai đường thẳng cắt nhau thì:
\(a \ne a' \Leftrightarrow m\neq 2m+1\)
\(\Leftrightarrow m-2m \neq 1\)
\(\Leftrightarrow -m \ne 1\)
\(\Leftrightarrow m \ne -1\)
Kết hợp với điều kiện trên, ta có \(m \ne -1,\ m \ne 0,\ m \ne \dfrac{-1}{2}\) thì hai đường thẳng trên cắt nhau.
Đề cương ôn tập học kì 1 - Vật lí 9
Đề thi vào 10 môn Anh Lâm Đồng
Đề thi vào 10 môn Văn Quảng Bình
Đề thi học kì 2 mới nhất có lời giải
Unit 11: Changing roles in society