1. Nội dung câu hỏi
Với giá trị nào của n thì đồ thị đầy đủ Kn có một chu trình Hamilton? Có một đường đi Hamilton?
2. Phương pháp giải
Đọc kĩ yêu cầu, gợi nhớ kiến thức để thực hiện.
3. Lời giải chi tiết
Đồ thị đầy đủ Kn có n ≥ 2, n ∈ ℕ.
+ Với n = 2 ta có K2 không có chu trình Hamilton, nhưng có đường đi Hamilton (đi từ đỉnh này qua đỉnh còn lại).
+ Với n ≥ 3, n ∈ ℕ.
Đồ thị đầy đủ Kn là một đơn đồ thị có n đỉnh và mỗi đỉnh có bậc là n – 1.
- Sử dụng định lí Ore, ta thấy Kn có một chu trình Hamilton khi mỗi cặp đỉnh không kề nhau đều có tổng bậc không nhỏ hơn n, tức là (n – 1) + (n – 1) ≥ n, tương đương với n ≥ 2, kết hợp với điều kiện suy ra n ≥ 3, n ∈ ℕ. (Ta cũng có thể sử dụng định lí Dirac để tìm điều kiện của n)
- Sử dụng Định lí 4 (suy ra từ định lí Dirac), ta thấy Kn có một đường đi Hamilton khi mỗi đỉnh có bậc không nhỏ hơn , tức là n – 1 ≥ , tương đương với n ≥ 1, kết hợp với điều kiện suy ra n ≥ 3, n ∈ ℕ.
Vậy với n ≥ 3, n ∈ ℕ thì đồ thị đầy đủ Kn có một chu trình Hamilton và với n ≥ 2, n ∈ ℕ thì đồ thị đầy đủ Kn có một đường đi Hamilton.
Giáo dục pháp luật
Unit 9: Good citizens
Chuyên đề 1. Dinh dưỡng khoáng - tăng năng suất cây trồng và nông nghiệp sạch
CHƯƠNG 2: NITƠ - PHOTPHO
CHƯƠNG 3. SINH TRƯỞNG VÀ PHÁT TRIỂN
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11