Bài 1. Mở đầu về phương trình
Bài 2. Phương trình bậc nhất một ẩn và cách giải
Bài 3. Phương trình đưa được về dạng ax + b = 0
Bài 4. Phương trình tích
Bài 5. Phương trình chứa ẩn ở mẫu
Bài 6. Giải bài toán bằng cách lập phương trình
Bài 7. Giải bài toán bằng cách lập phương trình (tiếp)
Ôn tập chương III. Phương trình bậc nhất một ẩn
Bằng cách phân tích vế trái thành nhân tử, giải các phương trình sau:
LG a.
\(2x(x - 3) + 5(x - 3) = 0\)
Phương pháp giải:
Áp dụng:
- Các phương pháp nhóm, đặt nhân tử chung, hằng đẳng thức để biến đổi vế trái thành nhân tử.
- Phương pháp giải phương trình tích: \(A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0.\)
Lời giải chi tiết:
\(\eqalign{
& \,2x\left( {x - 3} \right) + 5\left( {x - 3} \right) = 0 \cr
& \Leftrightarrow \left( {x - 3} \right)\left( {2x + 5} \right) = 0 \cr
& \Leftrightarrow \left[ \matrix{
x - 3 = 0 \hfill \cr
2x + 5 = 0 \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
x = 3 \hfill \cr
2x = - 5 \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
x = 3 \hfill \cr
x = \dfrac{{ - 5}}{2} \hfill \cr} \right. \cr} \)
Vậy tập nghiệm của phương trình là \(S = \left\{ {3;\dfrac{{ - 5}}{2}} \right\}\)
LG b.
\(\left( {{x^2} - 4} \right) + \left( {x - 2} \right)\left( {3 - 2x} \right) = 0\)
Phương pháp giải:
Áp dụng:
- Các phương pháp nhóm, đặt nhân tử chung, hằng đẳng thức để biến đổi vế trái thành nhân tử.
- Phương pháp giải phương trình tích: \(A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0.\)
Lời giải chi tiết:
\(\eqalign{
& \,\left( {{x^2} - 4} \right) + \left( {x - 2} \right)\left( {3 - 2x} \right) = 0 \cr
& \Leftrightarrow \left( {x - 2} \right)\left( {x + 2} \right) + \left( {x - 2} \right)\left( {3 - 2x} \right) = 0 \cr
& \Leftrightarrow \left( {x - 2} \right)\left[ {\left( {x + 2} \right) + \left( {3 - 2x} \right)} \right] = 0 \cr
& \Leftrightarrow \left( {x - 2} \right)\left( {x + 2 + 3 - 2x} \right) = 0 \cr
& \Leftrightarrow \left( {x - 2} \right)\left( { - x + 5} \right) = 0 \cr
& \Leftrightarrow \left[ \matrix{
x - 2 = 0 \hfill \cr
- x + 5 = 0 \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
x = 2 \hfill \cr
x = 5 \hfill \cr} \right. \cr} \)
Vậy tập nghiệm của phương trình là \(S = \{2;5\}\)
LG c.
\({x^3} - 3{x^2} + 3x - 1 = 0\)
Phương pháp giải:
Áp dụng:
- Các phương pháp nhóm, đặt nhân tử chung, hằng đẳng thức để biến đổi vế trái thành nhân tử.
- Phương pháp giải phương trình tích: \(A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0.\)
Lời giải chi tiết:
\(\eqalign{
& \,{x^3} - 3{x^2} + 3x - 1 = 0 \cr
& \Leftrightarrow {x^3} - 3{x^2}.1 + 3x{.1^2} - {1^3} = 0 \cr
& \Leftrightarrow {\left( {x - 1} \right)^3} = 0 \cr
& \Leftrightarrow x - 1 = 0 \cr
& \Leftrightarrow x = 1 \cr} \)
Vậy tập nghiệm của phương trình là \(S=\{ 1\}\)
LG d.
\(x(2x - 7) - 4x + 14 = 0\)
Phương pháp giải:
Áp dụng:
- Các phương pháp nhóm, đặt nhân tử chung, hằng đẳng thức để biến đổi vế trái thành nhân tử.
- Phương pháp giải phương trình tích: \(A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0.\)
Lời giải chi tiết:
\(\eqalign{
& \,x\left( {2x - 7} \right) - 4x + 14 = 0 \cr
& \Leftrightarrow x\left( {2x - 7} \right) - 2\left( {2x - 7} \right) = 0 \cr
& \Leftrightarrow \left( {2x - 7} \right)\left( {x - 2} \right) = 0 \cr
& \Leftrightarrow \left[ \matrix{
2x - 7 = 0 \hfill \cr
x - 2 = 0 \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
2x = 7 \hfill \cr
x = 2 \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
x =\dfrac{7}{2} \hfill \cr
x = 2 \hfill \cr} \right. \cr} \)
Vậy tập nghiệm của phương trình là \(S = \left\{ {\dfrac{7}{2};2} \right\}\)
LG e.
\({\left( {2x - 5} \right)^2} - {\left( {x + 2} \right)^2} = 0\)
Phương pháp giải:
Áp dụng:
- Các phương pháp nhóm, đặt nhân tử chung, hằng đẳng thức để biến đổi vế trái thành nhân tử.
- Phương pháp giải phương trình tích: \(A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0.\)
Lời giải chi tiết:
\(\eqalign{
& \,{\left( {2x - 5} \right)^2} - {\left( {x + 2} \right)^2} = 0 \cr
& \Leftrightarrow \left[ {\left( {2x - 5} \right) + \left( {x + 2} \right)} \right]\left[ {\left( {2x - 5} \right) - \left( {x + 2} \right)} \right] = 0 \cr
& \Leftrightarrow \left( {2x - 5 + x + 2} \right)\left( {2x - 5 - x - 2} \right) = 0 \cr
& \Leftrightarrow \left( {3x - 3} \right)\left( {x - 7} \right) = 0 \cr
& \Leftrightarrow \left[ \matrix{
3x - 3 = 0 \hfill \cr
x - 7 = 0 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
3x = 3 \hfill \cr
x = 7 \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
x = 3:3 \hfill \cr
x = 7 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 1 \hfill \cr
x = 7 \hfill \cr} \right. \cr} \)
Vậy tập nghiệm phương trình là: \(S= \{ 7; 1\}\)
LG f.
\({x^2} - x - \left( {3x - 3} \right) = 0\)
Phương pháp giải:
Áp dụng:
- Các phương pháp nhóm, đặt nhân tử chung, hằng đẳng thức để biến đổi vế trái thành nhân tử.
- Phương pháp giải phương trình tích: \(A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0.\)
Lời giải chi tiết:
\(\eqalign{
& \,{x^2} - x - \left( {3x - 3} \right) = 0 \cr
& \Leftrightarrow x\left( {x - 1} \right) - 3\left( {x - 1} \right) = 0 \cr
& \Leftrightarrow \left( {x - 1} \right)\left( {x - 3} \right) = 0 \cr
& \Leftrightarrow \left[ \matrix{
x - 1 = 0 \hfill \cr
x - 3 = 0 \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
x = 1 \hfill \cr
x = 3 \hfill \cr} \right. \cr} \)
Vậy tập nghiệm của phương trình là \(S = \{1;3\}\)
Chương 3: Mol và tính toán hóa học
Bài 13. Tình hình phát triển kinh tế - xã hội khu vực Đông Á
Tải 20 đề kiểm tra giữa học kì - Hóa học 8
Bài 8: Tôn trọng và học hỏi các dân tộc khác
Bài 26. Đặc điểm tài nguyên khoáng sản Việt Nam
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8