PHẦN HÌNH HỌC - TOÁN 9 TẬP 2

Bài 24 trang 119 - Sách giáo khoa toán 9 tập 2

Đề bài

Hình khai triển mặt xung quanh của một hình nón là một hình quạt, bán kính hình quạt đó là \(16cm,\) số đo cung là \(120^0.\) Tang của góc ở đỉnh hình nón là:

(A) \(\dfrac{\sqrt{2}}4\)               (B) \(\dfrac{\sqrt{2}}2\)          (C) \(\sqrt{2}\)            (D) 2\(\sqrt{2}\)

Phương pháp giải - Xem chi tiết

+) Ta có: \(h^2=l^2-r^2.\)

+) Gọi góc cần tính là \(\alpha.\) Khi đó: \(\tan \alpha=\dfrac{r}{h}.\)

Lời giải chi tiết

 

                               

Đường sinh của hình nón là \(l = 16.\) 

Độ dài cung \(AB\) của đường tròn chứa hình quạt là \(\dfrac {\pi .16.120}{180}=\dfrac{32. \pi}{3},\) và độ dài cung này bằng chu vi đáy hình nón \(C= 2πr\) suy ra \(2 \pi r=\dfrac{32. \pi}{3}\)\(\Rightarrow r= \dfrac{16}{3}.\)

Trong tam giác vuông \(AOS\) có: \(h= \sqrt{16^2-{\left( {\dfrac{{16}}{3}} \right)^2}}= 16\sqrt{\dfrac{8}{9}}= \dfrac{32\sqrt{2}}{3}\)  

Vậy ta có: \(\tan \alpha= \dfrac{r}{h} = \dfrac{\sqrt{2}}{4}.\) 

Chọn A.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved