PHẦN HÌNH HỌC - TOÁN 8 TẬP 1

Bài 24 trang 123 SGK Toán 8 tập 1

Đề bài

Tính diện tích tam giác cân có cạnh đáy bằng \(a\) và cạnh bên bằng \(b.\)

Phương pháp giải - Xem chi tiết

- Tam giác cân là tam giác có hai cạnh bằng nhau.

- Định lí Pytago: Bình phương cạnh huyền bằng tổng bình phương của hai cạnh góc vuông.

Diện tích tam giác bằng nửa tích của một cạnh với chiều cao ứng với cạnh đó.

Lời giải chi tiết

Gọi \(h\) là chiều cao của tam giác cân có đáy là \(a\) và cạnh bên là \(b.\) 

Xét tam giác \(ABC\) cân tại \(A\) có \(AB=b, BC=a\) và chiều cao \(AH=h\). Ta tính diện tích tam giác \(ABC\).

Vì \(\Delta ABC\) cân tại \(A\) (gt) nên \(AH\) vừa là đường cao vừa là đường trung tuyến (tính chất tam giác cân). Suy ra, \(H\) là trung điểm của \(BC\).

\( \Rightarrow BH = \dfrac{{BC}}{2} = \dfrac{a}{2}\)

Áp dụng định lý Pytago vào tam giác vuông \(ABH\) ta có: 

\(A{B^2} = A{H^2} + B{H^2}\)

\( \Rightarrow A{H^2} = A{B^2} - B{H^2}\)

\({h^2} = {b^2} - {\left( {\dfrac{a}{2}} \right)^2} = \dfrac{{4{b^2} - {a^2}}}{4} \)\(\Rightarrow h = \dfrac{{\sqrt {4{b^2} - {a^2}} }}{2}\)

Diện tích tam giác \(ABC\) là: 

\(S = \dfrac{1}{2}ah = \dfrac{1}{2}a.\dfrac{{\sqrt {4{b^2} - {a^2}} }}{2} \)\(= \dfrac{1}{4}a\sqrt {4{b^2} - {a^2}} .\)

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved