Bài 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông
Bài 2. Tỉ số lượng giác của góc nhọn
Bài 3. Bảng lượng giác
Bài 4. Một số hệ thức về cạnh và góc trong tam giác vuông
Bài 5. Ứng dụng thực tế các tỉ số lượng giác của góc nhọn. Thực hành ngoài trời
Ôn tập chương I – Hệ thức lượng giác trong tam giác vuông
Đề kiểm tra 15 phút - Chương 1 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 1 - Hình học 9
Bài 1. Sự xác định của đường tròn. Tính chất đối xứng của đường tròn
Bài 2. Đường kính và dây của đường tròn
Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Bài 4. Vị trí tương đối của đường thẳng và đường tròn
Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
Bài 6. Tính chất của hai tiếp tuyến cắt nhau
Bài 7. Vị trí tương đối của hai đường tròn
Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
Ôn tập chương II – Đường tròn
Đề kiểm tra 15 phút - Chương 2 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Hình học 9
Đề bài
Sắp xếp các tỉ số lượng giác sau theo thứ tự tăng dần:
a) \(\sin 78^{\circ}, \cos 14^{\circ}, \sin 47^{\circ},\cos 87^{\circ}\);
b) \(\tan 73^{\circ}, \cot 25^{\circ}, \tan 62^{\circ}, \cot 38^{\circ}\).
Phương pháp giải - Xem chi tiết
a) +) Sử dụng công thức \(\cos \alpha = \sin (90^o - \alpha)=\sin \beta\) để đưa hết về cùng là \(\sin\) của một góc.
+) Nếu \(\alpha < \beta \Rightarrow \sin \alpha < \sin \beta\), với \(0^o < \alpha\ ,\ \beta < 90^o\).
b) +) Sử dụng công thức \(\cot \alpha = \tan (90^o - \alpha)=\tan \beta\) để đưa hết về cùng là \(\tan\) của một góc.
+) Nếu \(\alpha < \beta \Rightarrow \tan \alpha < \tan \beta\), với \(0^o < \alpha\ ,\ \beta < 90^o\).
Lời giải chi tiết
a) Ta có: \(\cos 14^{\circ}=\sin(90^o - 14^o)=\sin 76^{\circ}\);
\(\cos 87^{\circ}=\sin (90^o - 87^o)=\sin 3^{\circ}.\)
Vì \( 3^o < 47^o < 76^o < 78^o\)
\(\Rightarrow \sin 3^{\circ}< \sin 47^{\circ}< \sin 76^{\circ}< \sin 78^{\circ}\)
\(\Rightarrow \cos 87^{\circ}< \sin 47^{\circ}< \cos 14^{\circ} < \sin 78^o\).
b) Ta có: \(\cot 25^{\circ}=\tan (90^o - 25^o)=\tan 65^{\circ}; \)
\(\cot 38^{\circ}=\tan (90^o - 38^o)=\tan 52^{\circ}\).
Vì \(52^o < 62^o < 65^o < 73^o\)
\(\Rightarrow \tan 52^{\circ}< \tan 62^{\circ}< \tan 65^{\circ}< \tan 73^{\circ}\);
\(\Rightarrow \cot 38^{\circ}< \tan 62^{\circ}< \cot 25^{\circ}< \tan 73^{\circ}\).
Bài 27
Bài 14: Quyền và nghĩa vụ lao động của công dân
CHƯƠNG 5. DẪN XUẤT CỦA HIĐROCACBON. POLIME
Đề thi vào 10 môn Văn Hà Nam
CHƯƠNG III. QUANG HỌC