Đề bài
Cho tam giác ABC cân tại A và \(\widehat A = {50^o}\). Nửa đường tròn đường kính AC cắt AB tại D và cắt BC tại H. Tính số đo các cung AD, DH và HC.
Phương pháp giải - Xem chi tiết
+) Chứng minh tam giác ADC vuông tại D, sử dụng định lí đường trung tuyến trong tam giác vuông, chứng minh tam giác OAD cân tại O, tính \(\widehat {AOD}\).
+) Tương tự tính \(\widehat {HOC}\). Từ đó tính \(\widehat {DOH}\).
+) Sử dụng định lí: Số đo góc ở tâm bằng số đo cung bị chắn tính số đo các cung AD, DH và HC.
Lời giải chi tiết
Gọi O là trung điểm AC \( \Rightarrow O\) là tâm đường tròn đường kính AC.
+) Ta có \(\widehat {ADC} = {90^0}\) (góc nội tiếp chắn nửa đường tròn) \( \Rightarrow \Delta ACD\) vuông tại D.
\( \Rightarrow DO = \dfrac{1}{2}AC = OC = OD\) (định lí đường trung tuyến trong tam giác vuông)
\( \Rightarrow \Delta OAD\) cân tại O \( \Rightarrow \widehat {OAD} = \widehat {ODA} = {50^0}\).
Xét tam giác OAD có \(\widehat {OAD} + \widehat {ODA} + \widehat {AOD} = {180^0}\) (tổng ba góc trong một tam giác)
\( \Rightarrow {50^0} + {50^0} + \widehat {AOD} = {180^0} \)
\(\Rightarrow {100^0} + \widehat {AOD} = {180^0} \)
\(\Rightarrow \widehat {AOD} = {180^0} - {100^0} = {80^0}\).
Mà \(\widehat {AOD}\) là góc ở tâm \( \Rightarrow \widehat {AOD} = sdcung\,AD\) (số đo góc ở tâm bằng số đo cung bị chắn).
Vậy \(sd \;cung AD = 80^o\).
+) \(\Delta ABC\) cân tại A \( \Rightarrow \widehat {ABC} = \widehat {ACB}\).
Mà \(\widehat {ABC} + \widehat {ACB} + \widehat {BAC} = {180^0}\) (tổng ba góc trong 1 tam giác)
\( \Rightarrow \widehat {ABC} + \widehat {ACB} = {180^0} - \widehat {BAC} = {180^0} - {50^0} = {130^0}\).
\( \Rightarrow \widehat {ABC} = \widehat {ACB} = \dfrac{{{{130}^0}}}{2} = {65^0}.\)
Ta có \(\widehat {AHC} = {90^0}\) (góc nội tiếp chắn nửa đường tròn) \( \Rightarrow \Delta AHC\) vuông tại H.
\( \Rightarrow HO = \dfrac{1}{2}AC = OA = OC\) (định lí đường trung tuyến trong tam giác vuông)
\( \Rightarrow \Delta OHC\) cân tại O \( \Rightarrow \widehat {OHC} = \widehat {OCH} = {65^0}\).
Xét tam giác OHC có : \(\widehat {OCH} + \widehat {OHC} + \widehat {HOC} = {180^0}\) (tổng ba góc trong 1 tam giác).
\( \Rightarrow {65^0} + {65^0} + \widehat {HOC} = {180^0} \)
\(\Rightarrow {130^0} + \widehat {HOC} = {180^0} \)
\(\Rightarrow \widehat {HOC} = {50^0}\).
\( \Rightarrow sdcung\,HC = \widehat {HOC} = {50^0}\) (số đo góc ở tâm bằng số đo cung bị chắn).
+) Ta có :
\(\begin{array}{l}\widehat {AOD} + \widehat {DOH} + \widehat {HOC} = \widehat {AOC} = {180^0} \\\Rightarrow {80^0} + \widehat {DOH} + {50^0} = {180^0}\\ \Rightarrow \widehat {DOH} = {180^0} - {130^0} = {50^0}\end{array}\)
\( \Rightarrow sdcung\,DH = \widehat {DOH} = {50^0}\)(số đo góc ở tâm bằng số đo cung bị chắn).
Bài 15: Vì phạm pháp luật và trách nhiệm pháp lí của công dân
Đề thi vào 10 môn Anh Hải Phòng
Đề thi vào 10 môn Toán Tuyên Quang
Chương 4. Hiđrocacbon. Nhiên liệu
Bài 37. Thực hành: Vẽ và phân tích biểu đồ về tình hình sản xuất của ngành thủy sản ở Đồng bằng sông Cửu Long