Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng Căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)
Bài 8. Rút gọn biểu thức chứa căn bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I – Căn bậc hai. Căn bậc ba
Đề kiểm tra 15 phút - Chương I - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương I - Đại số 9
Bài 1. Nhắc lại và bổ sung các khái niệm về hàm số
Bài 2. Hàm số bậc nhất
Bài 3. Đồ thị của hàm số y = ax + b (a ≠ 0)
Bài 4. Đường thẳng song song và đường thẳng cắt nhau
Bài 5. Hệ số góc của đường thẳng y = ax + b (a ≠ 0).
Ôn tập chương II – Hàm số bậc nhất
Đề kiểm tra 15 phút - Chương 2 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Đại số 9
Đề bài
a) Vẽ đồ thị của các hàm số sau trên cùng một mặt phẳng tọa độ:
\(y = \dfrac{2}{3}x + 2\); \(y = - \dfrac{3}{2}x + 2\)
b) Một đường thẳng song song với trục hoành \(Ox\), cắt trục tung \(Oy\) tại điểm có tung độ bằng \(1\), cắt các đường thẳng \(y = \dfrac{2}{3}x + 2\) và \(y = - \dfrac{3}{2}x + 2\) theo thứ tự tại hai điểm \(M\) và \(N\). Tìm tọa độ của hai điểm \(M\) và \(N\).
Phương pháp giải - Xem chi tiết
a) Cách vẽ đồ thị hàm số \(y=ax+b,\ (a \ne 0)\): Đồ thị hàm số \(y=ax+b \, \, (a\neq 0)\) là đường thẳng:
+) Cắt trục hoành tại điểm \(A(-\dfrac{b}{a}; \, 0).\)
+) Cắt trục tung tại điểm \(B(0;b).\)
Xác định tọa độ hai điểm \(A\) và \(B\) sau đó kẻ đường thẳng đi qua hai điểm đó ta được đồ thị hàm số \(y=ax+b \, \, (a\neq 0).\)
b) +) Đường thẳng song song với trục \(Ox\) có dạng \(y=a\), đường thẳng song song với trục \(Oy\) có dạng \(x=b\).
+) Hai đường thẳng \(y=ax+b,\ y=a'x+b'\) cắt nhau tại \(A\). Hoành độ điểm \(A\) là nghiệm của phương trình: \(ax+b=a'x+b\). Giải phương trình tìm \(x\). Thay \(x\) tìm được vào công thức hàm số trên tìm được tung độ điểm \(A\).
Lời giải chi tiết
a) Hàm số \(y = \dfrac{2}{3}x + 2\)
Cho \(x= 0 \Rightarrow y = \dfrac{2}{3}. 0+ 2=0+2=2 \Rightarrow A(0; 2)\)
Cho \(y= 0 \Rightarrow 0 = \dfrac{2}{3}. x+ 2 \Rightarrow x=-3 \Rightarrow B(-3; 0)\)
Đường thẳng đi qua hai điểm \(A,\ B\) là đồ thị của hàm số \(y = \dfrac{2}{3}x + 2\).
+) Hàm số \(y =- \dfrac{3}{2}x + 2\)
Cho \(x= 0 \Rightarrow y = -\dfrac{3}{2}. 0+ 2=0+2=2 \Rightarrow A(0; 2)\)
Cho \(y=0 \Rightarrow y = -\dfrac{3}{2}. x+ 2 \Rightarrow x= \dfrac{4}{3} \Rightarrow C {\left(\dfrac{4}{3}; 0 \right)}\)
Đường thẳng đi qua hai điểm \(A,\ C\) là đồ thị của hàm số \(y = -\dfrac{3}{2}x + 2\).
b) Đường thẳng song song với trục \(Ox\) cắt trục \(Oy\) tại điểm có tung độ \(1\) có dạng: \(y=1\).
Vì \(M\) là giao của đường thẳng \(y=\dfrac{2}{3}x+2\) và \(y=1\) nên hoành độ của \(M\) là nghiệm của phương trình:
\(\dfrac{2}{3}x+2=1\)
\(\Leftrightarrow \dfrac{2}{3}x=1-2\)
\(\Leftrightarrow \dfrac{2}{3}x=-1\)
\(\Leftrightarrow x=-\dfrac{3}{2}\)
Do đó tọa độ \(M\) là: \(M{\left( -\dfrac{3}{2}; 1 \right)}\).
Vì \(N\) là giao của đường thẳng \(y=-\dfrac{3}{2}x+2\) và \(y=1\) nên hoành độ của \(N\) là nghiệm của phương trình:
\(-\dfrac{3}{2}x+2=1\)
\(\Leftrightarrow -\dfrac{3}{2}x=1-2\)
\(\Leftrightarrow -\dfrac{3}{2}x=-1\)
\(\Leftrightarrow x=\dfrac{2}{3}\)
Do đó tọa độ \(N\) là: \(N{\left( \dfrac{2}{3}; 1 \right)}\).
Đề thi vào 10 môn Văn Cà Mau
Bài 22
CHƯƠNG 5. DẪN XUẤT CỦA HIDROCACBON - POLIME
Đề thi vào 10 môn Toán Tuyên Quang
Đề cương ôn tập học kì 1 - Vật lí 9