PHẦN ĐẠI SỐ - TOÁN 9 TẬP 1

Bài 25 trang 55 sgk Toán 9 tập 1

Đề bài

a) Vẽ đồ thị của các hàm số sau trên cùng một mặt phẳng tọa độ: 

\(y = \dfrac{2}{3}x + 2\);                                       \(y =  - \dfrac{3}{2}x + 2\)

b) Một đường thẳng song song với trục hoành \(Ox\), cắt trục tung \(Oy\) tại điểm có tung độ bằng \(1\), cắt các đường thẳng \(y = \dfrac{2}{3}x + 2\) và \(y =  - \dfrac{3}{2}x + 2\) theo thứ tự tại hai điểm \(M\) và \(N\). Tìm tọa độ của hai điểm \(M\) và \(N\).

Phương pháp giải - Xem chi tiết

a) Cách vẽ đồ thị hàm số \(y=ax+b,\ (a \ne 0)\): Đồ thị hàm số \(y=ax+b \, \, (a\neq 0)\) là đường thẳng:

+) Cắt trục hoành tại điểm \(A(-\dfrac{b}{a}; \, 0).\) 

+) Cắt trục tung tại điểm \(B(0;b).\) 

Xác định tọa độ hai điểm \(A\) và \(B\) sau đó kẻ đường thẳng đi qua hai điểm đó ta được đồ thị hàm số  \(y=ax+b \, \, (a\neq 0).\)

b) +) Đường thẳng song song với trục \(Ox\) có dạng \(y=a\), đường thẳng song song với trục \(Oy\) có dạng \(x=b\).

+) Hai đường thẳng \(y=ax+b,\ y=a'x+b'\) cắt nhau tại \(A\). Hoành độ điểm \(A\) là nghiệm của phương trình: \(ax+b=a'x+b\). Giải phương trình tìm \(x\). Thay \(x\) tìm được vào công thức hàm số trên tìm được tung độ điểm \(A\).

Lời giải chi tiết

 

a) Hàm số \(y = \dfrac{2}{3}x + 2\)

Cho \(x= 0 \Rightarrow y = \dfrac{2}{3}. 0+ 2=0+2=2 \Rightarrow A(0; 2)\)

Cho \(y= 0 \Rightarrow 0 = \dfrac{2}{3}. x+ 2 \Rightarrow x=-3 \Rightarrow B(-3; 0)\)

Đường thẳng đi qua hai điểm \(A,\ B\) là đồ thị của hàm số \(y = \dfrac{2}{3}x + 2\).

+) Hàm số \(y =- \dfrac{3}{2}x + 2\) 

Cho \(x= 0 \Rightarrow y = -\dfrac{3}{2}. 0+ 2=0+2=2 \Rightarrow A(0; 2)\)

Cho \(y=0 \Rightarrow y = -\dfrac{3}{2}. x+ 2 \Rightarrow x= \dfrac{4}{3}  \Rightarrow C {\left(\dfrac{4}{3}; 0 \right)}\)

Đường thẳng đi qua hai điểm \(A,\ C\) là đồ thị của hàm số \(y = -\dfrac{3}{2}x + 2\).

b) Đường thẳng song song với trục \(Ox\) cắt trục \(Oy\) tại điểm có tung độ \(1\) có dạng: \(y=1\).

Vì \(M\) là giao của đường thẳng \(y=\dfrac{2}{3}x+2\) và \(y=1\) nên hoành độ của \(M\) là nghiệm của phương trình: 

\(\dfrac{2}{3}x+2=1\)

\(\Leftrightarrow \dfrac{2}{3}x=1-2\)

\(\Leftrightarrow \dfrac{2}{3}x=-1\)

\(\Leftrightarrow x=-\dfrac{3}{2}\)

Do đó tọa độ \(M\) là: \(M{\left( -\dfrac{3}{2}; 1 \right)}\).

Vì \(N\) là giao của đường thẳng \(y=-\dfrac{3}{2}x+2\) và \(y=1\) nên hoành độ của \(N\) là nghiệm của phương trình:

\(-\dfrac{3}{2}x+2=1\)

\(\Leftrightarrow -\dfrac{3}{2}x=1-2\)

\(\Leftrightarrow -\dfrac{3}{2}x=-1\)

\(\Leftrightarrow x=\dfrac{2}{3}\)

Do đó tọa độ \(N\) là: \(N{\left( \dfrac{2}{3}; 1 \right)}\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved