Bài 27 trang 59 SBT Hình học 12 Nâng cao

Đề bài

Cho hình trụ có trục \({O_1}{O_2}\). Một mặt phẳng \(\left( \alpha  \right)\) song song với trục \({O_1}{O_2}\), cắt hình trụ theo thiết diện là hình chữ nhật ABCD. Gọi O là tâm của thiết diện đó. Tính \(\widehat {{O_1}{\rm{O}}{{\rm{O}}_2}}\)  biết rằng bán kính đường tròn ngoại tiếp hình chữ nhật ABCD bằng bán kính đường tròn đáy hình trụ.

Lời giải chi tiết

Vì ABCD là hình chữ nhật nên O là trung điểm của AC.

Gọi M là trung điểm của AB thì \({O_1}M \bot AB,OM \bot AB\) và theo giải thiết, AO=AO1.

Hai tam giác vuông MAO và MAO1 có MA chung, \(OA = {O_1}A\) nên \(OM = {O_1}M.\)

Từ đó \(\widehat {{\rm{O}}{{\rm{O}}_1}M}\)= 450, do đó \(\widehat {{\rm{O}}{{\rm{O}}_1}O_2}\) = 450.

Dễ thấy \(\Delta {O_1}O{O_2}\) cân tại O, vậy \(\widehat {{O_1}{\rm{O}}{{\rm{O}}_2}}\)  =  900.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved