Bài 28 trang 120 Sách bài tập Hình học lớp 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Cho tứ diện SABC có \(SC = CA = AB = a\sqrt 2 ,SC \bot \left( {ABC} \right)\), tam giác ABC vuông tại A. Các điểm \(M \in SA,N \in BC\) sao cho \(AM = CN = t(0 < t < 2a)\)

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

Tính độ dài đoạn MN. Tìm giá trị t để MN ngắn nhất.

Lời giải chi tiết:

Ta chọn hệ trục Oxyz sao cho gốc tọa độ O trùng A, tia Ox chứa AC, tia Oy chứa AB và tia Oz cùng hướng tới tia CS (h.98). Khi đó, ta có:

\(A(0;0;0),B(0;a\sqrt 2 ;0),C(a\sqrt 2 ;0;0),\)

\(S(a\sqrt 2 ;0;a\sqrt 2 ),\)

\(\eqalign{  & M\left( {{{t\sqrt 2 } \over 2};0;{{t\sqrt 2 } \over 2}} \right);N\left( {a\sqrt 2  - {{t\sqrt 2 } \over 2};{{t\sqrt 2 } \over 2};0} \right)  \cr  &  \Rightarrow \overrightarrow {MN}  = \left( {\sqrt 2 (a - t);{{t\sqrt 2 } \over 2}; - {{t\sqrt 2 } \over 2}} \right)  \cr  &  \Rightarrow  {MN}  = \sqrt {2({a^2} - 2at + {t^2}) + {{{t^2}} \over 2} + {{{t^2}} \over 2}}  \cr&\;\;\;\;\;\;\;\;\;\;\;\;\;= \sqrt {3{t^2} - 4at + 2{a^2}}   \cr  &  \;\;\;\;\;\;\;\;\;\;\;\;\;= \sqrt {3{{\left( {t - {{2a} \over 3}} \right)}^2} + {{2{a^2}} \over 3}}  \ge {{a\sqrt 6 } \over 3}. \cr} \)

Dấu "=" xảy ra khi \(t = {{2a} \over 3}\) thỏa mãn điều kiện 0 < t < 2a.

Vậy MN ngắn nhất bằng \({{a\sqrt 6 } \over 3}\) khi \(t = {{2a} \over 3}.\)

LG b

Khi đoạn MN ngắn nhất, chứng minh MN là đường vuông góc chung của BC và SA.

Lời giải chi tiết:

Khi MN ngắn nhất thì :

\(\overrightarrow {MN}  = \left( {{{a\sqrt 2 } \over 3};{{a\sqrt 2 } \over 3}; - {{a\sqrt 2 } \over 3}} \right) \Rightarrow \left\{ \matrix{  \overrightarrow {MN} .\overrightarrow {SA}  = 0 \hfill \cr  \overrightarrow {MN} .\overrightarrow {BC}  = 0 \hfill \cr}  \right.\)

\( \Rightarrow MN\) là đường vuông góc chung của SA và BC.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved