Bài 28 trang 96 Tài liệu dạy – học Toán 9 tập 2

Đề bài

Cho đường tròn (O) và hai dây cung AB, CD bằng nhau và cắt tại điểm M khác O nằm bên trong đường tròn (C nằm trên cung nhỏ AB và B nằm trên cung nhỏ CD).

a) Chứng minh cung AC=BD .

b) Chứng minh hai tam giác MAC và MDB bằng nhau.

c) Tứ giác ACBD là hình gì?

Phương pháp giải - Xem chi tiết

a) Cộng trừ cung.

b) Chứng minh hai tam giác MAC và MDB bằng nhau theo trường hợp g-c-g.

c) Chứng minh hai góc ở vị trí so le trong bằng nhau \( \Rightarrow AD//BC\).

Chứng minh hình thang ADBC có hai góc ở đáy bằng nhau.

Lời giải chi tiết

 

 

a) Ta có \(AB = CD \Rightarrow cung\,AB = cung\,CD\)  (hai dây bằng nhau căng hai cung bằng nhau)

\( \Rightarrow cung\,AB - cung\,BC = cung\,CD - cung\,BC \) \(\Leftrightarrow cung\,AC = cung\,BD\).

b) Xét \(\Delta MAC\) và \(\Delta MDB\) có :

\(cung\,AC = cung\,BD \Rightarrow AC = BD\) (hai dây bằng nhau căng hai cung bằng nhau)

\(\widehat {MAC} = \widehat {MDB}\) (hai góc nội tiếp cùng chắn cung BC)

\(\widehat {MCA} = \widehat {MBD}\) (hai góc nội tiếp cùng chắn cung AD)

\( \Rightarrow \Delta MAC = \Delta MDB\,\,\left( {g.c.g} \right)\)

c) Ta có \(cung\,AC = cung\,BD \Rightarrow \widehat {ABC} = \widehat {BAD}\)  (trong 1 đường tròn, hai góc nội tiếp chắn hai cung bằng nhau thì bằng nhau).

Mà hai góc này ở vị trí so le trong \( \Rightarrow AD//BC \Rightarrow ACBD\) là hình thang.

\(cung\,AB = cung\,CD \Rightarrow \widehat {ADB} = \widehat {CAD}\) (trong 1 đường tròn, hai góc nội tiếp chắn hai cung bằng nhau thì bằng nhau).

Do đó ACBD là hình thang cân.

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved