PHẦN HÌNH HỌC - TOÁN 9 TẬP 1

Bài 29 trang 116 sgk Toán 9 - tập 1

Đề bài

Cho góc \(xAy\) khác góc bẹt, điểm \(B\) thuộc \(Ax\). Hãy dựng đường tròn \((O)\) tiếp xúc với \(Ax\) tại \(B\) và tiếp xúc với \(Ay\).

Phương pháp giải - Xem chi tiết

Bài toán dựng hình chia làm \(4\) bước:

Bước 1. Phân tích: giả sử hình cần dựng đã được vẽ. Lập luận để tìm cách dựng được hình.

Bước 2. Dựng hình: Dựa vào bước phân tích trên liệt kê thứ tự các phép dựng hình cơ bản.

Bước 3. Chứng minh: Bằng lí luận, chứng minh hình vừa dựng thỏa mãn tất cả các giả thiết của bài toán.

Bước 4. Biện luận: thiết lập điều kiện giải được của bài toán. Tức là xét xem bài toán giải được trong trường hợp nào và có bao nhiêu nghiệm. 

Lời giải chi tiết

 

Phân tích: Giả sử đã dựng được hình thỏa mãn đề bài. Khi đó:

Đường tròn \((O)\) tiếp xúc với hai cạnh của góc \(xAy\) nên tâm \(O\) nằm trên tia phân giác \(Am\) của góc \(xAy\) (xem lại

bài 28 trang 116 SGK toán 9 tập 1

).

Đường tròn \((O)\) tiếp xúc với \(Ax\) tại \(B\) nên tâm \(O\) nằm trên đường thẳng \(d\perp Ax\) tại \(B\). 

Vậy \(O\) là giao điểm của tia \(Am\) với đường thẳng \(d\).

Cách dựng

- Dựng tia phân giác Am của góc \(xAy\).

- Qua \(B\) dựng đường thẳng \(d\perp Ax\), cắt tia \(Am\) tại \(O\).

- Dựng đường tròn \((O;OB)\), đó là đường tròn phải dựng.

Chứng minh

Vì \(OB\perp Ax\) tại \(B\) nên đường tròn \((O;OB)\) tiếp xúc với \(Ax\) tại \(B\). 

Vì \(O\) nằm trên tia phân giác của góc \(xAy\) nên \(O\) cách đều hai cạnh của góc \(xAy\). Do đó đường tròn \((O;OB)\) tiếp xúc với \(Ay\).

Biện luận. Bài toán luôn có một nghiệm hình. 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved