Bài 3 trang 104 SGK Hình học 11

Đề bài

Cho hình chóp \(S.ABCD\) có đáy là hình thoi \(ABCD\) và có \(SA=SB=SC=SD\).Gọi \(O\) là giao điểm của \(AC\) và \(BD\). Chứng minh rằng:

a) Đường thẳng \(SO\) vuông góc với mặt phẳng \((ABCD)\);

b) Đường thẳng \( AC\) vuông góc với mặt phẳng \((SBD)\) và đường thẳng \(BD\) vuông góc với mặt phẳng \(SAC\).

Phương pháp giải - Xem chi tiết

Sử dụng kết quả của định lí:

Nếu một đường thẳng vuông góc với hai đường thẳng cắt nhau cùng thuộc một mặt phẳng thì nó vuông góc với mặt phẳng ấy.

Lời giải chi tiết

a) \(SA=SC\) nên tam giác \(SAC\) cân tại \(S\).

\(O\) là giao của hai đường chéo hình bình hành nên \(O\) là trung điểm của \(AC\) và \(BD\).

Do đó \(SO\) vừa là trung tuyến đồng thời là đường cao trong tam giác \(SAC\) hay \(SO\bot AC\)

Chứng minh tương tự ta được: \(SO\bot BD\)

Ta có: 

\(\left\{ \begin{array}{l}
SO \bot AC\\
SO \bot BD\\
AC \cap BD = O\\
AC,BD \subset \left( {ABCD} \right)
\end{array} \right. \) \(\Rightarrow SO \bot \left( {ABCD} \right)\)

b) \(ABCD\) là hình thoi nên \(AC\bot BD\)

\(\left\{ \begin{array}{l}
AC \bot BD\\
AC \bot SO\\
SO \cap BD = O\\
SO,BD \subset \left( {SBD} \right)
\end{array} \right. \) \(\Rightarrow AC \bot \left( {SBD} \right)\)

\(\left\{ \begin{array}{l}
BD \bot AC\\
BD \bot SO\\
SO \cap AC = O\\
SO,AC \subset \left( {SAC} \right)
\end{array} \right. \) \(\Rightarrow BD \bot \left( {SAC} \right)\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved