Bài 3 trang 119 sgk Hình học 11

Đề bài

Cho hình lập phương \(ABCD.A'B'C'D'\) cạnh \(a\). Chứng minh rằng các khoảng cách từ các điểm \(B, C, D, A', B', D'\) đến đường chéo \(AC'\) đều bằng nhau. Tính khoảng cách đó.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+) Xác định và tính khoảng cách từ điểm \(B\) đến \(AC'\) bằng cách sử dụng hệ thức lượng trong tam giác vuông.

+) Chứng minh các tam giác bằng nhau và suy ra các đường cao tương ứng bằng nhau.

Lời giải chi tiết

 

Gọi \(K\) là hình chiếu của \(B\) trên \(AC'\). 

Ta có \(AB \, \bot  \, \left( {BCC'B'} \right) \Rightarrow AB \,  \bot  \, BC' \Rightarrow \Delta ABC'\) vuông tại B.

Dễ thấy \(BC'\) là đường chéo của hình vuông cạnh \(a \Rightarrow BC' = a\sqrt 2 .\)

Áp dụng hệ thức lượng trong tam giác vuông \(ABC'\) có: 

\(\dfrac{1}{BK^{2}}=\dfrac{1}{BA^{2}}+\dfrac{1}{BC^{2}}\) \(=\dfrac{1}{a^{2}}+\dfrac{1}{(a\sqrt{2})^{2}}=\dfrac{3}{2a^{2}}\)\( \Rightarrow BK=\dfrac{a\sqrt{6}}{3}.\) 

Ta có:

\(\Delta ABC' = \Delta C'CA = \Delta ADC' \)\(= \Delta AA'C' = \Delta C'B'A = \Delta C'D'A\)

\((c.g.c)\)

Do đó các chiều cao tương ứng của các tam giác này bằng nhau.

Vậy khoảng cách từ \(B, C, D, A', B', D'\) tới \(AC'\) đều bằng \( \dfrac{a\sqrt{6}}{3}\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved