PHẦN ĐẠI SỐ - TOÁN 9 TẬP 1

Bài 31 trang 19 sgk Toán 9 - tập 1

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

LG a

So sánh \( \sqrt{25 - 16}\) và \(\sqrt {25}  - \sqrt {16}\)

Phương pháp giải:

Tính cụ thể từng kết quả rồi so sánh

Lời giải chi tiết:

Ta có:

+) \( \sqrt {25 - 16} = \sqrt 9 =\sqrt{3^2}= 3.\)  
+) \( \sqrt {25} - \sqrt {16} \)\(= \sqrt{5^2}-\sqrt{4^2}\)\(=5 - 4 = 1 \).

Vì \(3>1 \Leftrightarrow \sqrt {25 - 16}>\sqrt {25} - \sqrt {16} \).

Vậy \(\sqrt {25 - 16}  > \sqrt {25}  - \sqrt {16} \)

LG b

LG b

Chứng minh rằng: với \(a > b >0\) thì \(\sqrt a  - \sqrt b  < \sqrt {a - b} \)

Phương pháp giải:

+) Định lí so sánh hai căn bậc hai số học của hai số không âm:

\( a< b \Leftrightarrow \sqrt a < \sqrt b\).

+) \( \sqrt{ a^2} = a\),  với \( a \ge 0\). 

+) Sử dụng kết quả bài 26 trang 16 SGK toán 9 tập 1: Với hai số dương \(a,b\) ta có: \(\sqrt {a + b}  < \sqrt a  + \sqrt b \)

Lời giải chi tiết:

Bài ra cho \(a > b > 0\) nên \(\sqrt a ,\sqrt b \) và \(\sqrt {a - b} \) đều xác định và dương.

Ta sẽ so sánh \(\sqrt a \) với \(\sqrt {a - b}  + \sqrt b \) 

Theo kết quả bài 26 trang 16 SGK toán 9 tập 1, với hai số dương \(a-b\) và \(b,\) ta sẽ có:

\(\sqrt {a - b}  + \sqrt b  > \sqrt {a - b + b} \) 

Suy ra: 

\(\sqrt {a - b}  + \sqrt b  > \sqrt a  \Leftrightarrow \sqrt {a - b}  > \sqrt a  - \sqrt b \)

Vậy \(\sqrt a  - \sqrt b  < \sqrt {a - b} \) với \(a > b > 0.\) 

Cách khác 1: 

Với \(a > b > 0\) ta có \(\left\{ \begin{array}{l}\sqrt a  > \sqrt b \\a - b > 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\sqrt a  - \sqrt b  > 0\\\sqrt {a - b}  > 0\end{array} \right.\) 

Xét \(\sqrt a  - \sqrt b  < \sqrt {a - b} \) , bình phương hai vế ta được \({\left( {\sqrt a  - \sqrt b } \right)^2} < {\left( {\sqrt {a - b} } \right)^2} \)\(\Leftrightarrow {\left( {\sqrt a } \right)^2} - 2.\sqrt a .\sqrt b  + {\left( {\sqrt b } \right)^2} < a - b\)

\( \Leftrightarrow a - 2\sqrt {ab}  + b < a - b \)\(\Leftrightarrow 2b - 2\sqrt {ab}  < 0\)

\( \Leftrightarrow 2\sqrt b \left( {\sqrt b  - \sqrt a } \right) < 0\)  luôn đúng vì  \(\left\{ \begin{array}{l}\sqrt b  > 0\\\sqrt b  - \sqrt a  < 0\,\left( {do\,0 < b < a} \right)\end{array} \right.\)

Vậy \(\sqrt a  - \sqrt b  < \sqrt {a - b} \) với \(a > b > 0.\)

Cách khác 2:

Bài ra cho \(a > b > 0\) nên \(\sqrt a ,\sqrt b \) và \(\sqrt {a - b} \) đều xác định và dương.

Ta sẽ so sánh \(\sqrt a \) với \(\sqrt {a - b}  + \sqrt b \)

Ta có \(\sqrt {a - b}  + \sqrt b \) là số dương và

\({\left( {\sqrt {a - b}  + \sqrt b } \right)^2} \)\(= a - b + 2\sqrt {b\left( {a - b} \right)}  + b \)\(= a + 2\sqrt {b\left( {a - b} \right)} \) 

Rõ ràng  \(2\sqrt {b(a - b)}  > 0\) nên \({\left( {\sqrt {a - b}  + \sqrt b } \right)^2} > a\)   (1)

Ta có \(\sqrt a \) là số không âm và \({\left( {\sqrt a } \right)^2} = a\)  (2)

Từ (1) và (2) suy ra

\({\left( {\sqrt {a - b}  + \sqrt b } \right)^2} > {\left( {\sqrt a } \right)^2}\)      (3)

Từ (3) theo định lí so sánh các căn bậc hai số học, ta suy ra

\(\sqrt {{{\left( {\sqrt {a - b}  + \sqrt b } \right)}^2}}  > \sqrt {{{\left( {\sqrt a } \right)}^2}} \)

Hay \(\left| {\sqrt {a - b}  + \sqrt b } \right| > \left| {\sqrt a } \right|\)

Hay \(\sqrt {a - b}  + \sqrt b  > \sqrt a \)

Từ kết quả \(\sqrt a  < \sqrt {a - b}  + \sqrt b \), ta có \(\sqrt a  - \sqrt b  < \sqrt {a - b} \)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved