PHẦN ĐẠI SỐ - TOÁN 8 TẬP 2

Bài 31 trang 23 sgk toán 8 tập 2

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a.
LG b.
LG c.
LG d.

Giải các phương trình:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a.
LG b.
LG c.
LG d.

LG a.

\(\dfrac{1}{{x - 1}} - \dfrac{{3{x^2}}}{{{x^3} - 1}} = \dfrac{{2x}}{{{x^2} + x + 1}}\)

Phương pháp giải:

Bước 1: Tìm điều kiện xác định.

Bước 2: Qui đồng khử mẫu.

Bước 3: Giải phương trình bằng cách chuyển vế đưa về dạng phương trình tích.

*) Giải phương trình tích: \(A(x).B(x)=0\)

\( \Leftrightarrow A(x) = 0\) hoặc \(B(x) =0\)

Lời giải chi tiết:

\(\dfrac{1}{{x - 1}} - \dfrac{{3{x^2}}}{{{x^3} - 1}} = \dfrac{{2x}}{{{x^2} + x + 1}}\) (1)

Ta có: \(x - 1 ≠ 0 \Leftrightarrow x ≠ 1\) và \({x^3} - 1 \ne 0\) khi \(x^3 \ne 1\) hay \(x \ne 1\)

\(  {x^2+x + 1} = {{x^2} + x + \dfrac{1}{4} + \dfrac{3}{4}} \)

\( =  {{x^2} + 2.x.\dfrac{1}{2} + {{\left( {\dfrac{1}{2}} \right)}^2} + \dfrac{3}{4}}\)

\(= {{{\left( {x + \dfrac{1}{2}} \right)}^2} + \dfrac{3}{4}}\) 

Ta có: \({\left( {x + \dfrac{1}{2}} \right)^2} \geqslant 0\) với mọi \(x \in\mathbb R\) nên \({\left( {x + \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} > 0\) với mọi \(x \in\mathbb R\)

Do đó: 

ĐKXĐ:  \(x ≠ 1\)

MTC= \({x^3} - 1=(x-1)(x^2+x+1)\)

Ta có:

(1) \(  \Leftrightarrow \dfrac{{{x^2} + x + 1}}{{{x^3} - 1}} - \dfrac{{3{x^2}}}{{{x^3} - 1}} = \dfrac{{2x\left( {x - 1} \right)}}{{{x^3} - 1}}\)

\(\Rightarrow {x^2} + x + 1 - 3{x^2} = 2x\left( {x - 1} \right) \)

\(\Leftrightarrow  - 2{x^2} + x + 1 = 2{x^2} - 2x\)

\( \Leftrightarrow 0 = 2{x^2} - 2x + 2{x^2} - x - 1\)

\( \Leftrightarrow 0 = 4{x^2} - 3x - 1\)

\(\Leftrightarrow 4{x^2} - 3x - 1 = 0\)

\(\Leftrightarrow 4{x^2} - 4x+x - 1 = 0\)

\(\Leftrightarrow 4x\left( {x - 1} \right) + \left( {x - 1} \right) = 0\)

\(\Leftrightarrow \left( {x - 1} \right)\left( {4x + 1} \right) = 0\)

\( \Leftrightarrow \left[ \begin{gathered}
x - 1 = 0 \hfill \\
4x + 1 = 0 \hfill \\ 
\end{gathered} \right.\)

\( \Leftrightarrow \left[ \begin{gathered}
x = 1 \hfill \\
4x = - 1 \hfill \\ 
\end{gathered} \right.\)

\(\Leftrightarrow \left[ {\matrix{{x = 1}\text{( loại)} \cr {x = - \dfrac{1}{4}}\text{(thỏa mãn)}\cr} }\right.\)

Vậy phương trình có nghiệm duy nhất \(x =  - \dfrac{1}{4}\)

LG b.

\(\dfrac{3}{{\left( {x - 1} \right)\left( {x - 2} \right)}} + \dfrac{2}{{\left( {x - 3} \right)\left( {x - 1} \right)}} \)\(\,= \dfrac{1}{{\left( {x - 2} \right)\left( {x - 3} \right)}}\)

Phương pháp giải:

Bước 1: Tìm điều kiện xác định.

Bước 2: Qui đồng khử mẫu.

Bước 3: Giải phương trình bằng cách chuyển vế đưa về dạng phương trình tích.

*) Giải phương trình tích: \(A(x).B(x)=0\)

\( \Leftrightarrow A(x) = 0\) hoặc \(B(x) =0\)

Lời giải chi tiết:

\(\dfrac{3}{{\left( {x - 1} \right)\left( {x - 2} \right)}} + \dfrac{2}{{\left( {x - 3} \right)\left( {x - 1} \right)}} \)\(\,= \dfrac{1}{{\left( {x - 2} \right)\left( {x - 3} \right)}}\) (2)

ĐKXĐ: \(x ≠ 1, x ≠ 2, x ≠ 3\)

MTC= \((x-1)(x-2)(x-3)\)

Ta có: (2) 

\( \Rightarrow 3\left( {x - 3} \right) + 2\left( {x - 2} \right) = x - 1\)

\(\Leftrightarrow 3x - 9 + 2x - 4 = x - 1\)

\( \Leftrightarrow 5x - 13 = x - 1\)

\( \Leftrightarrow 5x - x =  - 1 + 13\)

\(⇔ 4x = 12\)

\( \Leftrightarrow x = 12:4\)

\(⇔ x = 3\) (không thỏa mãn ĐKXĐ)

Vậy phương trình vô nghiệm.

LG c.

\(1 + \dfrac{1}{{x + 2}} = \dfrac{{12}}{{8 + {x^3}}}\)

Phương pháp giải:

Bước 1: Tìm điều kiện xác định.

Bước 2: Qui đồng khử mẫu.

Bước 3: Giải phương trình bằng cách chuyển vế đưa về dạng phương trình tích.

*) Giải phương trình tích: \(A(x).B(x)=0\)

\( \Leftrightarrow A(x) = 0\) hoặc \(B(x) =0\)

Lời giải chi tiết:

\(1 + \dfrac{1}{{x + 2}} = \dfrac{{12}}{{8 + {x^3}}}\)(3)

Ta có:  \(8 + {x^3} \ne 0\)\(\Leftrightarrow x^3  ≠ -8 ⇔ x ≠ -2\)

ĐKXĐ: \(x ≠ -2\)

MTC= \(8 + {x^3}=(x+2)(x^2-2x+4)\)

Ta có: (3) \( \Leftrightarrow \dfrac{{8 + {x^3}}}{{8 + {x^3}}} + \dfrac{{{x^2} - 2x + 4}}{{8 + {x^3}}} = \dfrac{{12}}{{8 + {x^3}}}\)

\( \Rightarrow {x^3} + 8 + {x^2} - 2x + 4 = 12 \)

\( \Leftrightarrow {x^3} + {x^2} - 2x = 12 - 8 - 4\)

\(\Leftrightarrow {x^3} + {x^2} - 2x = 0\)

\(\Leftrightarrow x\left( {{x^2} + x - 2} \right) = 0\)

\(\Leftrightarrow x\left[ {{x^2} + 2x - x - 2} \right] = 0\)

⇔\(x[ x(x+2) - (x+2) ] = 0\)

⇔ \(x(x + 2)(x - 1) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
x + 2 = 0\\
x - 1 = 0
\end{array} \right. \)

\(\Leftrightarrow \left[ \begin{array}{l}
x = 0\left( \text{ thỏa mãn} \right)\\
x = - 2\left( \text{ loại} \right)\\
x = 1\left( \text{ thỏa mãn} \right)
\end{array} \right.\)

Vậy phương trình có tập nghiệm là \(S = \left\{ {0;1} \right\}\).

LG d.

\(\dfrac{{13}}{{\left( {x - 3} \right)\left( {2x + 7} \right)}} + \dfrac{1}{{2x + 7}}\)\(\, = \dfrac{6}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\)

Phương pháp giải:

Bước 1: Tìm điều kiện xác định.

Bước 2: Qui đồng khử mẫu.

Bước 3: Giải phương trình bằng cách chuyển vế đưa về dạng phương trình tích.

*) Giải phương trình tích: \(A(x).B(x)=0\)

\( \Leftrightarrow A(x) = 0\) hoặc \(B(x) =0\)

Lời giải chi tiết:

\(\dfrac{{13}}{{\left( {x - 3} \right)\left( {2x + 7} \right)}} + \dfrac{1}{{2x + 7}} \)\(\,= \dfrac{6}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\) (4)

ĐKXĐ: \(x \ne 3,x \ne  - 3,x \ne  - \dfrac{7}{2}\)

MTC= \({\left( {x - 3} \right)\left( {x + 3} \right)}\left( {2x + 7} \right)\)

Ta có: (4)

\( \Rightarrow 13\left( {x + 3} \right) + \left( {x - 3} \right)\left( {x + 3} \right) \)\(= 6\left( {2x + 7} \right) \)

\(\Leftrightarrow 13x + 39 + {x^2} - 9 = 12x + 42\)

\(\Leftrightarrow {x^2} + 13x + 30 = 12x + 42\)

\( \Leftrightarrow {x^2} + 13x + 30 - 12x - 42 = 0\)

\(\Leftrightarrow {x^2} + x - 12 = 0\)

\(\Leftrightarrow {x^2} + 4x - 3x - 12 = 0\)

\(\Leftrightarrow x\left( {x + 4} \right) - 3\left( {x + 4} \right) = 0\)

\(\Leftrightarrow \left( {x - 3} \right)\left( {x + 4} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}
x - 3 = 0\\
x + 4 = 0
\end{array} \right. \)

\(\Leftrightarrow \left[ \begin{array}{l}
x = 3\left( \text{không thỏa mãn} \right)\\
x = - 4\left( \text{thỏa mãn} \right)
\end{array} \right.\)

Vậy phương trình có tập nghiệm là \(S = \left\{-4 \right\}\). 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved