PHẦN ĐẠI SỐ - VỞ BÀI TẬP TOÁN 9 TẬP 2

Bài 31 trang 33 Vở bài tập toán 9 tập 2

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Giải hệ phương trình \(\left\{ \begin{array}{l}2x - y = m\\4x - {m^2}y = 2\sqrt 2 \end{array} \right.\)  trong mỗi trường hợp sau:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

\(m =  - \sqrt 2 \)

Phương pháp giải:

Thay giá trị của \(m\) vào hệ rồi sử dụng phương pháp thế hoặc phương pháp cộng đại số để tìm nghiệm \(\left( {x;y} \right)\) trong mỗi trường hợp.  

Lời giải chi tiết:

Khi \(m =  - \sqrt 2 \), ta có hệ phương trình

\(\left\{ \begin{array}{l}2x - y =  - \sqrt 2 \\4x - {\left( { - \sqrt 2 } \right)^2}y = 2\sqrt 2 \end{array} \right.\) hay \(\left\{ \begin{array}{l}0 =  - 2\sqrt 2 \,(vô\, lý)\\2x - y = \sqrt 2 \end{array} \right.\)

Dễ dàng thấy hệ phương trình đã cho vô nghiệm khi \(m =  - \sqrt 2 \) . 

LG b

\(m = \sqrt 2 \)

Phương pháp giải:

Thay giá trị của \(m\) vào hệ rồi sử dụng phương pháp thế hoặc phương pháp cộng đại số để tìm nghiệm \(\left( {x;y} \right)\) trong mỗi trường hợp.  

Lời giải chi tiết:

Khi \(m = \sqrt 2 \), ta có hệ phương trình

\(\left\{ \begin{array}{l}2x - y = \sqrt 2 \\4x - {\left( {\sqrt 2 } \right)^2}y = 2\sqrt 2 \end{array} \right.\) hay \(\left\{ \begin{array}{l}2x-y=\sqrt2\\2x -y=\sqrt 2 \end{array} \right.\)

Dễ thấy rằng hệ phương trình có vô số nghiệm, tập nghiệm của hệ là \(S = \left\{ {\left( {x;2x - \sqrt 2 } \right)|x \in \mathbb{R}} \right\}\)

LG c

\(m = 1\)

Phương pháp giải:

Thay giá trị của \(m\) vào hệ rồi sử dụng phương pháp thế hoặc phương pháp cộng đại số để tìm nghiệm \(\left( {x;y} \right)\) trong mỗi trường hợp.  

Lời giải chi tiết:

Khi \(m = 1\) ta có hệ phương trình \(\left\{ \begin{array}{l}2x - y = 1\\4x - {1^2}.y = 2\sqrt 2 \end{array} \right.\)

Giải hệ phương trình này:

\(\left\{ \begin{array}{l}2x - y = 1\\4x - {1^2}.y = 2\sqrt 2 \end{array} \right. \)\(\Leftrightarrow \left\{ \begin{array}{l}2x - y = 1\\4x - y = 2\sqrt 2 \end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}2x - y = 1\\2x = 2\sqrt 2  - 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{{2\sqrt 2  - 1}}{2}\\y = 2.\dfrac{{2\sqrt 2  - 1}}{2} - 1\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{{2\sqrt 2  - 1}}{2}\\y = 2\sqrt 2  - 2\end{array} \right.\)

Vậy hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right) = \left( {\dfrac{{2\sqrt 2  - 1}}{2};2\sqrt 2  - 2} \right)\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved